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A New Look at Counters: Don’t Run Like
Marathon in a Hundred Meter Race

Avijit Dutta, Ashwin Jha and Mridul Nandi

Abstract—In cryptography, counters (classically encoded as bit strings of fixed size for all inputs) are employed to prevent collisions
on the inputs of the underlying primitive which helps us to prove the security. In this paper we present a unified notion for counters,
called counter function family. Based on this generalization we identify some necessary and sufficient conditions on counters which
give (possibly) simple proof of security for various counter-based cryptographic schemes. We observe that these conditions are trivially
true for the classical counters. We also identify and study two variants of the classical counter which satisfy the security conditions.
The first variant has message length dependent counter size, whereas the second variant uses universal coding to generate message
length independent counter size. Furthermore, these variants provide better performance for shorter messages. For instance, when the
message size is 219 bits, AES-LightMAC with 64-bit (classical) counter takes 1.51 cycles per byte (cpb), whereas it takes 0.81 cpb and
0.89 cpb for the first and second variant, respectively. We benchmark the software performance of these variants against the classical
counter by implementing them in MACs and HAIFA hash function.

Index Terms—counter, XOR-MAC, protected counter sum, LightMAC, HAIFA, universal hash, cryptography, AES-NI.
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1 INTRODUCTION

In cryptography, counters are classically viewed as se-
quences of binary strings, 〈0〉s, 〈1〉s, . . . , 〈2s − 1〉s, where
〈i〉s is the s-bit binary representation of i for some fixed
integer s. The integer s is an application parameter which
remains fixed for all invocations of a scheme. In general
counters are employed to prevent collisions among the
inputs to the underlying cryptographic primitive. This in
turn helps in proving the security of the overall scheme.
Counter-based schemes can be broadly classified into two
categories, (1) Counter-as-Input (or CaI) Schemes: where
the counter value is used as a standalone input to the
underlying primitive; (2) Counter-as-Encoding (or CaE)
Schemes: where the counter is encoded within the input
to the underlying primitive. CTR [1], GCM [2], and SIV [3],
are some schemes that fall under the former category, while
XOR-MACs [4], PCS [5], and LightMAC [6] fall under the
later category. There are some schemes, such as HAIFA [7],
which can be included in both the categories. In this paper
we solely focus on CaE schemes.

1.1 Some Counter-as-Encoding Schemes

Counter-based encoding is used in HAIFA [7] (illustrated
in Fig. 1(a)), to enhance the (second preimage) security
of iterated hash functions. Notably, the popular second
preimage attacks [8], [9] on Merkle-Damgård (or MD) hash
function [10], [11] do not apply on HAIFA. In fact Bouil-
lagauet and Fouque [12] have shown that HAIFA has full
second preimage security in the random oracle model.

In 1995, Bellare et al. proposed the so-called XOR-
MACs [4], to construct stateful and probabilistic MACs.
At the highest level, XOR-MAC consist of three steps: (1)
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counter-based encoding of message into a collection of
blocks; (2) application of a pseudorandom function (or PRF)
f to each of the blocks and XORing them together into a
hash value, h; and (3) XORing h with f ′(R) where f ′ is
a PRF independent of f , and R is either a nonce (non-
repeating internal state) or a random salt. The original
security proof of XOR-MACs is based on the assumption
that f and f ′ are (pseudo)random functions. Later Bernstein
[13] provided an improved analysis when f and f ′ are
(pseudo)random permutations.

In 1999, Bernstein proposed the protected counter sum
(or PCS) [5], to construct stateless and deterministic MACs.
Similar to XOR-MACs, PCS also computes a hash value h
using the first two steps. But in the last step, it computes
f ′(h), where f ′ is a PRF independent of f . Recently Luykx
et al. have extended the idea of PCS, where they replaced
PRFs with PRPs, to construct LightMAC [6].

All these MAC constructions have a common underlying
function, that we call h (illustrated in Fig. 1(b)). In fact
XOR-MACs are based on the Hash-then-Mask (or HtM)
paradigm [14] (illustrated in Fig. 1(c)) by Wegman and
Carter. More precisely, if h is an AXU universal hash [15]
(defined later in subsection 2.3) and f ′ is a random function
(or permutation) independent of H , the hash-then-mask
paradigm is defined as h(M) ⊕ f ′(R). The security of
these schemes mainly rely on the non-repeating nature of
R and the universal property of h. PCS and LightMAC
are based on the Hash-then-PRF (HtPRF) paradigm [14],
[16] (illustrated in Fig. 1(d)), which is simply defined as
f ′(h(M)). The security of schemes based on this paradigm
rely on the universal property of h.

1.2 Motivation

Consider the three MAC schemes discussed in the preceding
subsection. All these schemes apply a counter-based input
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Fig. 1: Some CaE schemes. (a) HAIFA Hash Function H based on a
compression function C (primitive for this construction); (b) Counter
based AXU hash h based on a random function f (primitive for this
construction); (c) Hash-then-Mask (HtM) MAC; and (d) Hash-then-PRF
(HtPRF) MAC based on counter-based AXU hash h as shown in (b);
Note that the input message M := (M1, . . . ,Mb) is encoded into b
blocks, where each block Xi := 〈i〉s‖Mi is a concatenation of the s-bits
binary representation of i and the message block Mi of size n− s.

encoding to the message. Given a message M ∈ {0, 1}`,
` ≤ L (for fixed integers s and L), the encoding works as
follows: Let M ′ = M‖1‖0d where d is the smallest integer
such that n − s divides the bit-length (number of bits) of
M ′. Suppose M ′ = (M1,M2, . . . ,Mb), such that for all i ∈
{1, . . . , b}, Mi is of bit-length n − s. Then X := (X1 :=
〈1〉s‖M1, . . . , Xb := 〈b〉s‖Mb) is the encoded input of M .

Recall that, the encoding uses a classical counter with
a fixed parameter s. The choice of s may depend on the
nature of the application. More precisely, s should be chosen
in such a way that the number of encoded blocks generated
for the longest permissible message should not be more than
2s, to avoid the possible reseting of counter values.

A typical choice for the maximum permissible message
length would allow 264 encoded blocks, i.e., s is exactly 64
bits. Suppose AES cipher (with block size 128 bits) is used
to instantiate the LightMAC [6] scheme. Then each call of
AES will process 64 bits of message, as each encoded block
contains 64 bits of counter value and 64 bits of message. So it
would take 2 AES calls per 128 bits of message, independent
of whether the message size is 1 KB (213 bits), or 1 GB (233

bits). In short for a 1 KB message, LightMAC makes about
128 AES calls. On the other hand when s = 8, the number
of AES calls reduces to 69 (almost twice faster). But this
limits the maximum number of encoded blocks to 28. So a
classical counter cannot be efficient over a wide range of
message lengths.

When the message size is known beforehand, one can
simply choose the best choice of s for the given message
length, instead of fixing it throughout all the invocations.
This will definitely speed up the performance for shorter
messages and provide very similar performance when the
message size approaches the maximum size. Although this
idea is very natural, it has not been applied in any algo-
rithms so far.

One possible reason is that the security guarantee is
not obvious. One has to analyze the counter-as-encoding
schemes with variable length messages. In this case a gen-
eral view of counters could have made this analysis much
easier.

In [4] the authors have given a general framework for
constructing XOR-MACs. But even this general framework
is somewhat lacking and does not give a unified yet simple
treatment for all possible counter-based encodings. In the
main theorem of [5], it is assumed that given a message,
the encoding produces distinct encoded blocks for distinct
primitive calls. Although this points towards a general re-
quirement from any counter-based encoding, the indication
is rather implicit. Thus, a formal treatment of counters is
required. Furthermore, this generalization should allow a
generic proof technique that applies to all counter-based
encodings.

A disadvantage of the aforementioned message length
dependent counter scheme is the requirement of prior
knowledge of the message length. In many scenarios this
may not be possible. What can be a good approach when
the message length is not known beforehand?

Let us consider an analogous problem from athletics.
Consider a race over an unknown distance, where the ath-
letes would only know the finishing point once they actually
reach there. What should be a good strategy for running this
race? One may consider to run like a marathoner hoping
that it is a marathon. In this case, clearly the athlete loses if
the race is a hundred meter sprint. The better solution would
be to start like a sprinter and then gradually reduce speed
as the race progresses. This would definitely be optimal for
short runs.

Our problem is similar to the one just described. We want
to find a variable length counter that offers near optimal
counter size. Although similar problems are well-studied in
the field of prefix codes [17], [18] and data compression [19],
to the best of our knowledge it has not seen any interest in
cryptography. It would be interesting to investigate the tech-
niques used in prefix coding and construct a near optimal
counter scheme when the message length is not known.

1.3 Our Contributions
In this paper we define a general notion of counters and
closely study the security of CaE schemes based on this
general view. More precisely, we view a counter as a func-
tion from non-negative integers to bits-strings (may not be
of same sizes). An appropriate part of a message and the
counters are fed into the primitive. We describe a sufficient
condition for counters to ensure security guarantee (see sec-
tion 3). We further show that these properties give straight-
forward generic security proofs (see section 5) for counter-
based hash function (HAIFA), counter-based universal hash
functions and MACs (see section 4).

Our generalization of counters, can serve as a general
guideline for designers as well as developers on how to
choose or create a secure counter-based encoding scheme
for various applications. In other words, this work can be
used as a theoretical starting point in creating/choosing a
counter-based encoding scheme for practical purposes.

For instance, based on our generalizations we are able
to identify two efficient alternatives (described in section 3)
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for the standard counter scheme. We have implemented all
these counters (see section 6) for (1) Davis-Meyer based
HAIFA, (2) LightMAC, and (3) XOR-MACs. In this work
we solely focus on software implementation based com-
parison. Our implementations use Intel’s AES-NI and SSE4
instruction set [20]. We have observed that the practical
results support the theoretical speed up. For instance, for
1 MB message size, MAC implementations based on new
counter schemes use around 35% less clock cycles per
byte as compared to the standard MAC implementations
with 64-bit counter. Similarly HAIFA based on new counter
schemes uses approximately 32% less clock cycles per byte
as compared to the standard HAIFA implementation with
64-bit counter. These performance characteristics indicate
that the two new counter schemes are indeed much more
flexible and efficient as compared to the classical counter.

As noted earlier, we do not consider CaI schemes [1],
[2], [3], in this paper. In these schemes the counter size
does not really affects the number of primitive calls. So the
counter schemes considered in this paper may not give any
improvements.

2 PRELIMINARIES

2.1 Notation
We write the set of non-negative numbers as N. For a binary
string x = x1x2 · · ·xs ∈ {0, 1}s, we call |x| := s the
length or bit-size of x. For 1 ≤ r ≤ s, let lsbr(x) :=
xs−r+1xs−r+2 · · ·xs (or msbr(x) := x1x2 · · ·xr) denote the
least significant (respectively most significant) r bits of x.
For an integer i < 2s, 〈i〉s represents the canonical s-bit
binary representation of i. For two binary strings x and y,
x||y represents the concatenation of two strings x and y. For
any positive integer m, we write {0, 1}≤m = ∪mi=1{0, 1}i.
Given a binary string x ∈ {0, 1}s we can also view it as a
nonnegative integer less than 2s. Suppose x 6= 1s then we
define (x+ 1) to denote the s-bit binary string after adding
one to x (viewed as an integer).

Convention. Throughout this paper, we fix two positive
integers n and L.

1) The integer n represents the block size (bit-size) of
the underlying primitive (e.g., a blockcipher), and

2) L represents the length (bit-size) of the largest mes-
sage which can appear for a specific application.

All elements of {0, 1}n are called blocks. {0, 1}∗, ({0, 1}n)∗

denote the set of all finite length binary strings, and block
strings respectively. For any x ∈ {0, 1}∗, if ` = |x|, then
ˆ̀= d`/ne denotes the number of blocks in x. B, KB and MB
represent bytes, kilo bytes and mega bytes, respectively.

2.2 HAIFA Framework in Hash Function
Hash function H is a function from {0, 1}∗ to {0, 1}c. Hash
functions are usually constructed by means of iterating a
cryptographic compression function f : {0, 1}c ×{0, 1}n →
{0, 1}c, while trying to maintain the following three require-
ments:

1) Preimage resistance: Given a challenge y, it is hard
to find x such that H(x) = y. Here x is called
preimage of y.

2) Collision resistance: It is hard to find a pair (x, x′)
of distinct elements, called collision pair for H , such
that H(x) = H(x′).

3) Second preimage (2PI) resistance: Given a chal-
lenge x, it is hard to find a collision pair of the form
(x, x′) (in this case x′ is also called a second preimage
of x).

The most widely used mode of iteration is Merkle-Damgård
hash [10], [11], which is also known as the MD hash func-
tion. The simple iteration method maintains the collision
resistance and preimage resistance of the compression func-
tion. But there are multiple second preimage attacks [8],
[9] on MD hash function. In [7], Biham and Dunkelman
suggested the HAsh Iterative FrAmework (HAIFA) to re-
place the MD hash function, which would resist the earlier
attack strategies. The main idea behind HAIFA is the use
of counter-based (number of bits hashed so far) encoded
input in the iterated hash mode. More formally, let f :
{0, 1}c×{0, 1}n → {0, 1}c be a compression function,w ≤ n
be a fixed integer such that 2w ≤ L, and h0 := IV be a fixed
initial value. Then, given a message M ∈ {0, 1}`, we first
parse M‖10d‖〈`〉w as (M1, . . . ,Mb) ∈ ({0, 1}n−w)b where d
is the smallest nonnegative integer such that ` + w + 1 + d
is divisible by (n − w). The hash output is defined as hb
where hi’s are defined recursively as hi = f(hi−1, 〈i〉w‖Mi),
1 ≤ i ≤ b − 1, and hb = f(hb−1, 〈0〉w‖Mb) (see Fig. 2).1

For a fixed invocation of the hash function, this method
differentiates the two inputs of the underlying compression
function. This fact is used by Bouillaguet and Fouque [12] to
show that HAIFA has full (i.e. 2n) second preimage security
in the random oracle model.

2.2.1 Davis-Meyer Compression Function
Both MD hash function and HAIFA require an underlying
compression function. An old but popular method of con-
structing a compression function out of a blockcipher is due
to Davis and Meyer [21], [22]. The Davis-Meyer function
has been proved [23] to be a secure compression function in
the ideal cipher model (discussed below). Let e : {0, 1}n ×
{0, 1}c → {0, 1}c be a blockcipher, i.e., for any K ∈ {0, 1}n,
eK := e(K, ·) is a permutation over {0, 1}c. Davis-Meyer
compression function DMe : {0, 1}c × {0, 1}n → {0, 1}c is
defined as DMe(x,K) = eK(x)⊕ x.

h0 h1 h2 hb−1 hb
iv h

〈1〉w‖M1 〈2〉w‖M2 〈0〉w‖Mb

e e e

. . . . .

. . . . .

Fig. 2: HAIFA based on Davis-Meyer compression function.

The ideal cipher model by Coron et al. [24], [25] is widely
used as the de facto model for a blockcipher based hash
function. In this model, the adversary has access to e and it’s
inverse e−1 (defined as e−1(K, y) = e−1

K (y)). For any fresh
query (K,x) to e (i.e. (K,x) has not been queried to e before,
and there is no e−1-query (K, y) whose response is x), the
adversary obtains a response which is chosen uniformly

1. For administrative reason, we present a simpler variant of counter
in HAIFA. We refer [7] for the actual definition.
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from {0, 1}c \(S1∪S2) where S1 and S2 denote the set of all
outputs of eK -query (i.e. key is K), and the set of all inputs
of e−1

K -query, respectively. Similarly a fresh query to e−1 can
be defined. Thus, a second preimage adversary A, against
the HAIFA hash H based on the Davis-Meyer function can
make some e and e−1 queries, and finally it has to return a
second preimage for a previously given challenge message.
We write,

Adv2PI(A) = Pr[M ′ ← Ae,e
−1

(M) : H(M ′) = H(M)]

to denote the second preimage advantage of A against H .

2.3 (Almost-XOR) Universal Hash Function
An n-bit hash function h is a (K,D)-family of functions
{hk := h(k, ·) : D → {0, 1}n}k∈K defined over its domain
or message space D and indexed by the key space K.
Definition 1 (ε-AXU hash function [26]). A (K,D)-family

h is called ε-Almost-XOR Universal (or AXU) hash
function, if for any two distinct x and x′ in D and a
δ ∈ {0, 1}n, the δ-differential probability

diffh,δ[x, x′] := PrK [hK(x)⊕ hK(x′) = δ] ≤ ε

where the random variable K is uniformly distributed
over the set K.

The maximum δ-differential probability, over all possible pairs
of distinct inputs x, x′, is denoted by ∆h,δ . The maximum
differential probability ∆h := maxδ ∆h,δ . If ∆h ≤ ε then we
say that h is an ε-AXU hash. Multi-linear hash [27], [28],
and pseudo-dot-product or PDP hash [27], [29], [30], [31]
are some examples of AXU hash functions. In this paper we
will see an example of a CaE AXU hash function (similar to
PHASH [32]).
Universal Hash Function. When δ = 0, the 0-differential
event is equivalent to collision. So we write diffh,0[x, x′] and
∆h,0 by collh[x, x′] and collh, respectively, and we call them
collision probabilities.
Definition 2 (ε-universal hash function). A hash family h is

called ε-universal (or ε-U) if
collh := maxx6=x′ PrK [hK(x) = hK(x′)] ≤ ε.

2.4 Pseudorandom Function and Permutation
An n-bit random function $D is a function chosen uniformly
from the set of all functions from D to {0, 1}n. When,
D = {0, 1}n, we simply write $n. Similarly, an n-bit random
permutation Πn is a permutation chosen uniformly from
the set of all permutations over {0, 1}n. Given an oracle
adversary A, we define the PRF-advantage of A against a
keyed function FK as

Advprf
F (A) = |Pr[AFK = 1]− Pr[A$n = 1]|.

Let Advprf
F (t, q, ˆ̀) denote maxAAdvprf

F (A) where the max-
imum is taken over all A running in time at most t, making
at most q queries such that the longest query has at most ˆ̀

many blocks. We similarly define the PRP-advantage of A
as

Advprp
F (A) = |Pr[AFK = 1]− Pr[AΠn = 1]|.

The maximum PRP advantage is denoted as Advprp
F (t, q)

(note that for a keyed permutation the domain is {0, 1}n, so

all queries have exactly one block). The prf-prp switching
lemma [33], [34] says that for a keyed function (or permuta-
tion) FK over the domain {0, 1}n,

|Advprp
F (t, q)−Advprf

F (t, q)| ≤ q2

2n+1
. (1)

A COMPOSITION THEOREM: PRF(U) ≡ PRF. It is well-
known [14], [16] that composition of an ε universal hash
function h and a PRF F is a PRF. More precisely, we have the
following result for HtPRF due to Wegman and Carter [14],
and Shoup [16],
Theorem 1 ( [14], [16]). Let GK1,K2

:= FK2
◦ hK1

: D →
{0, 1}n where h is an ε-universal hash over D. Then,

Advprf
G (t, q) ≤ Advprf

F (t′, q, ˜̀) +

(
q

2

)
× ε,

where t′ = t+O(qT ) and T denotes the maximum time
for computing h.

2.5 Message Authentication Code

Message authentication codes or MACs are symmetric-key
primitives which are used to ensure data integrity. The
working principle of MAC is simple. Whenever Alice wants
to send a message M to Bob, she sends (M,T ) where the
tag T = FK(M) is the output of tag-generation algorithm.
In case of deterministic MAC, when Bob receives a message
tag pair (M ′, T ′), he verifies the equality T ′ = FK(M ′)
(if verified, the pair is called a valid pair). We denote this
verification algorithm by VK(M,T ) which returns 1 on
valid pair and 0 for invalid. Usually, an adversary may
attempt (multiple times) to forge a tag for a message after
having seen other tagged messages. We define the forgery
advantage of a forger A against FK as

Advforge
F (A) = Pr[AFK ,VK wins] (2)

where A wins if it submits a valid and fresh (not obtained
through previous FK queries) (M,T ) pair to the verification
oracle. The maximum advantage in forging F is defined as

Advforge
F (t, qm, qv) := maxAAdvforge

F (A)

where the maximum is taken over all A which makes at
most qm tag-generation queries and qv verification queries,
and runs in time at most t. The tag generation algorithm
is called (t, qm, qv, ε)-mac if Advforge

F (t, qm, qv) ≤ ε. Note
that the tag-generation algorithm FK can be probabilistic
in nature. When it is deterministic, the unforgeability is
implied by the PRF property of FK .
Lemma 1. [35] If FK is a deterministic keyed function then

Advforge
F (t, qm, qv) ≤ Advprf

F (t, qm + qv) + qv2
−n.

2.5.1 Categories of MAC
CBC-MAC [36], PMAC [37], EMAC [38], HMAC [39],
PCS [5], LightMAC [6] etc. are some examples of determin-
istic MACs. A probabilistic tag-generation algorithm takes
an additional random input R along with the message M .
The tag of the probabilistic MAC, denoted as F $

K(M) :=
(R,FK(R,M)), is the pair (R, T ). The verification algorithm
VK(M, (R, T )) checks whether FK(R,M) = T or not.
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XMACR [4], RMAC [40], MACRX3 [41], EHtM [42], RW-
MAC [42] and FRMAC [43] are some examples of prob-
abilistic MACs. Stateful MACs can be viewed as variants
of probabilistic MACs. In this case, R is treated as a nonce
(unique for each invocation of the tag-generation algorithm)
and stored in an internal memory. We denote the output of
a stateful MAC as F st(M). WMAC [44], XMACC [4], and
EWCDM [45] are some examples of stateful MACs. Many
probabilistic/stateful MAC schemes are based on the Hash-
then-Mask paradigm by Wegman and Carter [14]. For these
schemes the MAC security can be bounded by the universal
property of the underlying AXU hash function.
Theorem 2 ( [14]). Let hK : D → {0, 1}n be an ε-AXU hash

and FK′ be a keyed function over {0, 1}n. Let

GK,K′(R,M) = FK′(R)⊕ hK(M).

Then, we have

1) Advforge
G$ (t, qm, qv) ≤ Advprf

F (t′, qm + qv) + qvε +
q2

2n+1 .
2) Advforge

Gst (t, qm, qv) ≤ Advprf
F (t′, qm + qv) + qvε.

3 A NEW LOOK AT COUNTERS

In computer science, counters are used to count the number
of times a particular event or process has occurred. In
addition with counting, counters have a very special role in
cryptography. In CaE schemes, the counter values are used
to encode the message into distinct blocks. This freshness
of inputs actually helps in proving (possibly improved) the
security of CaE schemes. For example, the input block of
the i-th execution of the underlying compression function
of a HAIFA [7] hash function contains an encoding of
i. Similarly, in counter-based MACs, e.g. XOR-MACs [4],
PCS [5], LightMAC [6], the i-th input of the underlying
pseudorandom function or permutation contains an encod-
ing of i. The classical encoding of i is 〈i〉s which is the s-bit
binary representation of i for a fixed parameter s. Whenever
i < 2s, we have distinct binary string corresponding to each
counter value. For counter-based algorithms, the parameter
s can be chosen as per the needs of the application domain.
For example, if we know beforehand that for an application,
the message size can not be more than 232, then one can
choose s = 32. However, it must remain constant through-
out all the executions of the algorithm. This might affect
the performance for smaller length messages. In this section
we introduce a new and general way of looking at counters
which will provide some tools to improve the performances
of CaE schemes without compromising with the security.
Definition 3 (Counter function family). A counter function

family (we also use CFF) CTR is a family of counter
functions {ctr` : ` ≤ L} where for all ` ≤ L, ctr` : N →
{0, 1}<n. We say that CTR is prefix-free if for all ` ≤ L,
ctr` is prefix-free (i.e., for all i 6= j, ctr`(i) is not a prefix
of ctr`(j)).

The classical (or standard) encoding, as mentioned above,
can be viewed as a CFF STDs where stds`(i) = 〈i〉s, for a
fixed positive integer s < n. We use capital letters to denote
a function family and small letters for individual functions.
Note that the standard counter function std` is actually

independent of ` and hence for all `, the counter functions
are same. We call such CFFs message length independent. For a
message length independent CFF CTR, we simply write ctr
to denote the counter function ctr`. Note that the standard
counter is a prefix-free counter. Prefix-free CFF is necessary
to avoid repetitions among the inputs to the primitive (see
Lemma 2 below). We also note that the size of the output of
std` is fixed for all counter values. In general for a CFF CTR,
if ∀` ∀i, j |ctr`(i)| = |ctr`(j)|, then we say that the CFF has
fixed size. Otherwise, we call it a variable size CFF. We will see
some examples of message length dependent and variable
size CFFs later in the section.

3.1 Counter Function Family Based Message Encoding

Recall the encoding scheme discussed in section 1.2. When
we use the standard counter STDs with s2n−s ≤ L, we first
parse a message M ∈ {0, 1}` as (M1, . . . ,Mb−1,M

′
b) where

b = d `+1
n−se, |M1| = · · · |Mb−1| = n − s and |M ′b| < (n −

s) such that M = M1‖ · · · ‖Mb−1‖M ′b. Let Mb = M ′b‖10d

where d = n − s − 1 − |M ′b|. Thus, |Mb| = n − s. We also
denote the parsing of M as

(M1, . . . ,Mb)
n−s←−M or (M1, . . . ,Mb)

STDs

←− M

to emphasize the standard CFF. Now we define the b blocks
encoding as Xi = stds(i)‖Mi for all 1 ≤ i ≤ b. These
blocks are used as inputs to the underlying primitive, such
as blockcipher or compression function.

We extend the same methodology to define the encoding
for any other CFF CTR. For this, we first define the block
function bCTR(`), which associates each message size to a
unique number of blocks. We have seen that for standard
counter, bSTD(`) = d(`+ 1)/(n− s)e.
Definition 4. For any CFF CTR, we define the block func-

tion, bCTR(`) as the least integer b such that

`+ 1 ≤
b∑
i=1

(n− |ctr`(i)|) ≤ `+ n.

It is easy to see that such a b exists and it is unique. Now
given a message M ∈ {0, 1}`, ` ≤ L, we parse it as M =
M1‖ · · · ‖Mb−1‖M ′b where |Mi| = n − |ctr`(i)| for all i < b
and 0 ≤ |M ′b| < n−|ctr`(b)|. We similarly pad the last block
to make it compatible with the corresponding counter. More
precisely, we define Mb = M ′b‖10d where d = n−|ctr`(b)|−
1 − |M ′b|. Thus, |Mb| = n − |ctr`(b)|. Finally, we define the
encoding

CTR(M) := (X1, . . . , Xb)

where Xi = ctr`(i)‖Mi for all 1 ≤ i ≤ b. Thus, we also
view the CFF as an encoding function CTR : {0, 1}≤L →
({0, 1}n)+.

Recall that one of the main purpose of counters in
cryptography is to generate distinct blocks. Mathemati-
cally, a CFF CTR is called block-wise collision-free if for all
M ∈ {0, 1}`, ` ≤ L, Xi’s are distinct where CTR(M) =
(X1, . . . , Xb). Now we provide a characterization of block-
wise collision-free counters.

Lemma 2. CTR is block-wise collision-free if and only if it is
prefix-free.
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Proof: We first prove the “only if” direction. Suppose
there exists i 6= j such that i, j ≤ b and ctr`(i) is a prefix of
ctr`(j). Thus, we can find x and y such that ctr`(i)‖x =

ctr`(j)‖y ∈ {0, 1}n. Let (M1, . . . ,Mb)
CTR← M ∈ {0, 1}`.

Then we define M ′ ∈ {0, 1}` by replacing Mi and Mj by
x and y respectively. Thus, it is easy to see that X ′i = X ′j
where CTR(M ′) = (X ′1, . . . , X

′
b).

To prove the other direction, let us assume Xi = Xj for
some i 6= j. Therefore, ctr`(i)||Mi = ctr`(j)||Mj . This clearly
proves that either ctr`(i) is a prefix of ctr`(j), or ctr`(j) is a
prefix of ctr`(i).

3.2 Some (Efficient) Alternatives to the STD CFF
We have already demonstrated the classical or standard CFF
STDs. It is a message-length independent and fixed size
CFF. In this section we study two new examples of CFFs
and see their advantages over the standard one.

3.2.1 STDopt: A Message Length Dependent CFF
Counter function of our first CFF is an s bit classical en-
coding of its argument, where s depends on the message
size instead of a pre-determined fixed parameter. In fact,
s is defined as the smallest possible value such that we
can represent all the counter values distinctly for the given
message length. Formally, the counter function is defined as

stdopt` (i) = 〈i〉s, where s = min{g : 2g(n− g) > `}.

It is an example of message-length dependent and fixed size
CFF. Clearly, it is a prefix-free counter.

3.2.2 VARr: A Variable Size CFF
Till now we have seen counter functions which map integers
to their s bits binary representation. In case of STDs, s is
fixed (approx. lgL), whereas in case of STDopt, s depends on
the message length ` (approx. lg `). Both STDs and STDopt

are fixed size CFFs. Now we will construct a CFF which
maps integers to binary strings of monotonically increasing
lengths. A similar problem is well known in the field of
source coding. We briefly discuss these techniques assuming
that the set of symbols is N. Readers may refer to the
references cited for a more detailed exposition.

Prefix codes. A mapping α : N→ {0, 1}∗, is called a binary
prefix code [18] over integers, if for all x 6= y ∈ N, α(x)
is not a prefix of α(y) and vice-versa. Here α(x) is called
the codeword corresponding to x. Huffman codes [17], [18],
Shannon-Fano codes [18], [19], [46] and Universal codes [18],
[47] are some popular techniques for getting prefix codes.

Huffman codes and Shanon-Fano codes are in general
better than universal codes, when the probability (or fre-
quency) distribution over the integers is known. This is
generally the case in static data compression settings, such
as JPEG File Interchange Format [48] which employs a mod-
ified form of Huffman coding, and the ZIP file format [49]
which uses a modified version of Shannon-Fano coding. Al-
though Huffman codes and Shannon-Fano codes are better
than universal codes, but they require exact probability (or
frequency) distribution over the integers.

Universal Codes. A universal code [18], [47], [50] is a
binary prefix code, with the additional property that if

the probability (or frequency) distribution over integers is
monotonic, then the expected lengths of the codewords are
within a constant factor of the optimal expected lengths
for that distribution. Note that a universal code works for
any countably infinite set, and it only requires a monotonic
distribution. This is one of the main motivations behind
the study of universal codes. Our problem falls precisely
in this case, as we can always assume a natural monotonic
distribution over the number of blocks. For instance all mes-
sages must have at least one block, so 1 has the maximum
frequency, followed by 2, and so on.

In 1974, Elias proposed the first prefix code with univer-
sal property [47]. In 1975, he followed it up by proposing
several new examples of universal codes [50]. Some of
the popular examples of universal codes are Elias gamma
coding [18], [50], Elias delta coding [18], [50], Elias omega
coding [18], [50], Fibonacci coding [18], [51], Levenshtein
coding [18] and Exp-Golomb coding [18]. Now we describe
two examples of universal codes, viz., Elias gamma and
delta codings.
Elias Gamma Coding, γ. To code a number i ≥ 1:

1) Let j = blog2 ic, i.e., 2j ≤ i < 2j+1.
2) γ(i) := 0j‖〈i〉j+1.

Elias Delta Coding, δ. To code a number i ≥ 1:

1) Let j = blog2 ic, i.e., 2j ≤ i < 2j+1.
2) δ(i) := γ(j + 1)‖lsbj(〈i〉j+1).

To represent an integer i, Elias gamma uses 2 log2 i+ 1 bits,
and Elias delta uses log2 i+2 log2(log2 i+1)+1 bits. Clearly,
Elias delta is more compact as compared to Elias gamma.

CFF from Universal Coding. Theoretically, any universal
code U can be used to construct a length-independent vari-
able size prefix-free CFF U-CTR. Suppose U is a universal
code, then we define U-CTR as follows:

U-CTR = {u-ctr` : ` ≤ L} where u-ctr` = U, 1 ≤ ` ≤ L.

Clearly, U-CTR is prefix-free as U is universal. Although
one might be tempted to use U-CTR straightaway, there is
still some scope of improvement in this generic scheme.
Note that the motivation for universal coding is quite dif-
ferent than the cryptographic settings.

First, we are restricting the domain to some L, whereas
a universal code is defined over N. Intuitively it seems that
the universal codes must have some redundant information
that we can avoid. Second, all the CFFs discussed so far
have efficient counter update (generating u-ctr`(i+ 1) from
u-ctr`(i)) mechanism, which is not a mandatory requirement
for universal codes. So we should restrict our focus to
only those universal codes which support efficient update
mechanism, such as Elias delta code. Now we present our
second CFF candidate, called VARr, which is a modified
version of δ-CTR.

VARr Counter Function Family. We first fix r, an applica-
tion parameter chosen suitably (we will see very soon how
to choose r). As VARr would be message length indepen-
dent, it would be sufficient to define a function over the
domain {1, 2, . . . , L}. To begin with, we define varr(0) = 0r .
Now, for all i ≤ L, we will recursively define varr(i) given
that varr(j) has been defined for all j < i. Like STDs
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and STDopt, we increment the counter by one at every
step. In other words, we first define y = varr(i − 1) + 1.
If the r most significant bits get altered (this is easy to
check, as the remaining bits would all be zero), then we
define varr(i) = y‖0, otherwise we define varr(i) = y.
Mathematically, we can write the recursive definition of varr

for i ≥ 1, as

varr(i) =

{
x+ 1 if msbr(x) = msbr(x+ 1),

(x+ 1)‖0 if msbr(x) 6= msbr(x+ 1).

where x = varr(i− 1).
Clearly the size of the counter function output increases

slowly but monotonically with i. So VARr is an example
of message length independent and variable size CFF. To
understand this counter, we demonstrate how the counter
values are computed for r = 3. A boldface zero at the least
significant bit represents the added zero bit on expansion.
The underlined bits are the third most significant bits.

000, 0010, 0011, 01000, 01001, 01010, 01011, 011000, . . .

Now we will describe how one should choose the pa-
rameter r given that the limit on the message length is L.
Note that, when the size of the counter reaches r + i for
the first time, the i least significant bits of the counter value
are all zero. So the counter will be incremented 2i many
times before the next expansion in counter size. Since we
need to keep the r most significant bits non-zero (to avoid
repetitions), the following equation must be satisfied:

2r−1∑
i=0

(n− r − i) · 2i > L.

After doing some algebraic simplifications one can show
that the smallest r that satisfies the above equation is ap-
prox. log2 log2 L for L < 2c(n)·n where 1

2 ≤ c(n) < 1. Note
that for any integer i,

varr`(i) = 〈blog2ic〉r‖lsblog2 i(〈i〉log2 i+1),

whereas

δ(i) = γ(blog2 i+ 1c)‖lsblog2 i(〈i〉log2 i+1).

Clearly |varr`(i)| is less than |δ(i)| when

i ≥ 22
r−1
2 −1.

We generally fix the maximum message length to be 264 bits,
which gives r ≈ 6. So, the average counter size in VARr

will be less than the average counter size in δ-CTR, when
the number of generated blocks is at least 26. Specifically
for around 216 blocks, the average counter size in VARr is
shorter than the average counter size in δ-CTR by more than
3 bits. Now we show that VARr is a prefix-free CFF.
Theorem 3. Let r be defined as above then VARr is prefix-

free.

Proof: Let i 6= j be non-zero and x = msbr(varr(i))
and y = msbr(varr(j)). If x 6= y then x can not be prefix of
y. So assume x = y. Because of our choice of r, the r most
significant bits does not become 0r (except for the input
0). So, varr(i) and varr(j) have same size. As i and j are
distinct, the rest of the bits must be different. This proves
the prefix-free property.

3.2.3 Word Oriented Adaptation of Our Counters
The counter functions described in the preceding section
are aimed to minimize the counter size as much as pos-
sible, keeping all the counter values distinct (i.e., prefix-
free). However, there are different practical issues while
implementing these counter functions. The most important
issue is to parse the message into small chunks which are
compatible with the counter-based encoding. In practice, we
mostly receive messages as a sequence of words (e.g., 8-bit
(byte), or 32-bit words). It would be easier for implementa-
tion if we can parse the messages in multiples of word size.
More formally, let us fix a parameter w (elements of {0, 1}w
are called words). We define STDopt,w (the word oriented
adaption of STDopt) as follows:

stdopt,w` (i) = 〈i〉s, where s = min{g : w|g, (n− g)2g > `}.

Note that STDopt = STDopt,1. Now we describe how we
can generalize our second proposal to VARr,w which fits
into word oriented implementation, for r ≤ w. We define
the counter function recursively as before except that we
add 0w instead of single 0. More formally, varr,w(0) = 0w.
For i ≥ 1, let x = varr,w(i− 1). Then,

varr,w(i) =

{
x+ 1 if msbr(x) = msbr(x+ 1),

(x+ 1)‖0w if msbr(x) 6= msbr(x+ 1).

We choose r = 4 for w = 8 in our implementation.2 For
this choice of r, the counter function is prefix-free. In the
following example we describe how the counter expands
for r = 4 and w = 8.

00000000, . . . , 0001000008, . . . , 001000000000000008, . . .

To the best of our knowledge such word-oriented defini-
tions are not available for delta codes (for obvious reasons).
Even if we use our word-oriented definition, the resulting
code will not give better counter function. This can be
argued by the simple fact that in case of VARr,w, r is fixed,
so we can simply start with some fixed w and then move
as it is. But in case of delta code we have to consider the
underlying gamma code also which is variable in nature.
Handling two variable components may result in overheads
in the counter size as well as the update mechanism.

3.3 Comparison of Rates of Counter Function Families
Recall that we have defined the number of blocks in a
message of length ` as ˆ̀ = d`/ne. As we execute some
costly primitive function on these blocks, it would be good
to minimize the number of blocks as much as possible.
Definition 5. We define the rate function rateCTR(`) associ-

ated with a counter-based encoding CTR, as the ratio of
the number of blocks in the message to the total number
of blocks in the encoded message produced by CTR, i.e.,
rateCTR(`) =

ˆ̀

bCTR(`)
.

As ˆ̀≥ `/n, we have rateCTR(`) ≤ `
bn . So, one can achieve

maximum rate one (in this case there is no counter). Now
we provide a comparison between the rate functions for the
three CFFs defined above.

2. Our implementation uses a bit different step size to leverage Intel’s
AES-NI and SSE instructions.
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1) For the standard counter STDs, the rate function is

d`/ne
d(`+ 1)/(n− s)e

≈ n− lgL

n
.

When L is large, we need to choose large s ≈ log2 L,
which reduces the rate.

2) For STDopt, the rate function is

d`/ne
d(`+ 1)/(n− log2 `)e

≈ n− log2 `

n
.

Clearly, the rate of this counter is better than STDs

for all choices of ` < L.
3) For VARr , the rate function is a complex function in

n and r. We skip the exact algebraic expression here
and give an approximation,

d`/ne
d(`+ n− r + 2)/(n− r + 2− log2 `)e

≈ n− r + 2− log2 `

n

(
for `� n

)
.

Clearly, the rate of this counter is better than STD
for small messages and large s. Further the rate is
comparable with STDopt for n� r.

3.4 Word Oriented Rates of Counter Function Families
We will assume that n, `, L ∈ Mw, where Mw denotes the
set of all multiples of w. We assume that L = o(2n).

The word oriented rate functions for STDs and STDopt

are pretty similar to their bit oriented counterparts. For
instance, in STDs, we can simply choose s to be some
multiple of w. So we only derive the word oriented rate
function for VARr.

3.4.1 Estimating Parameter r in VARr,w

Let c = dr/we. We know that the following inequality holds
for the correct value of r,

2r−1∑
i=0

(n− cw − iw)2iw+cw−r ≥ L (3)

Let n′ := n − cw, r′ := cw − r, ṙ = 2r , and ẇ = 2w. Now
we will get a lower bound on r,

ṙ−1∑
i=0

(n′ − iw)2iw+r′ ≥ L

2r
′

(
n′
ṙ−1∑
i=0

ẇi − w
ṙ−1∑
i=0

i · ẇi
)
≥ L

2r
′
[(
n′ +

wẇ

ẇ − 1

)(
ẇṙ − 1

ẇ − 1

)
− wṙẇṙ

ẇ − 1

]
≥ L (4)

2r
′ [

(n′ + 2w)
(
2ẇṙ−1

)
− wẇṙ−1

]
≥ L (5)

ẇṙ (2n− w)≥ 2L (6)

where (4) can be obtained by simple algebraic simplifica-
tions. As W ≥ 2, we have 1

ẇ−1 ≤
2
ẇ . Using this we get (5).

Also c ≥ 1 and r′ ≤ w − 1, which gives us (6). Now simple
algebraic simplifications give us the upper bound on r,

r≥ log2

 log2

(
2L

2n−w

)
w

 (7)

For w � n� L, we get r ≈ log2 log2 L− log2 w.

3.4.2 Estimating the Block Function of VARr,w

For a given message length `, we are interested in a lower
bound on b(`).3 For simplicity we also assume c = r/w, i.e.,
r′ = 0. We restrict our analysis to only those `, for which
∃ k ≤ 2r − 1 such that the number of blocks,

b(`) = 2r
′
k−1∑
i=0

ẇi =

(
ẇk − 1

ẇ − 1

)
. (8)

We find an upper bound for b(`) in the following derivation,(
n′
k−1∑
i=0

ẇi − w
k−1∑
i=0

i · ẇi
)
≤ `+ n(

n′ +
wẇ

ẇ − 1
− wkẇk

ẇk − 1

)(
ẇk − 1

ẇ − 1

)
≤`+ n (9)

(n− r + w − wR)

(
ẇk − 1

ẇ − 1

)
.`+ n (10)

(n− r + w − log2(`+ n))

(
ẇk − 1

ẇ − 1

)
.`+ n (11)

For W ≥ 2, 1
ẇ−1 ≥

1
ẇ , and for moderately large k, we get

ẇk

ẇk−1
≈ 1. Using these facts we get (10) from (9). Similarly

wk . log2(` + n) (experimental results show that wk ≈
log2 `), which gives (11) from (10). Using (8) and (11) we
get,

b(`).
`+ n

n− r + w − log2(`+ n)
(12)

Rate Function for Word Oriented VARr,w. Finally we get
the following approximation for lower bound on the rate
function of word oriented VARr,w,

rateVARr,w

(`) &
n+ w − r − log2(`+ n)

n

for w � n � `. Note that we derived this function for
some restricted ` values. But our experimental results show
that this holds for all `. In Table 1 we provide the exper-
imental results for the word oriented rate functions of the
three candidate counter functions. Fig. 3 gives a graphical
comparison between the rates of the three CFFs.
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Fig. 3: Rate plot for the three CFFs.

3. Note that we have dropped VARr,w from the superscript as it is
obvious.
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TABLE 1: Comparison between the rates offered by the three candidate
CFFs for block size, n = 128.

Length
STDs

STDopt,8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 0.89 0.80 0.73 0.47 0.89 0.89
256B 0.89 0.84 0.73 0.48 0.89 0.89
512B 0.91 0.86 0.74 0.49 0.91 0.89
1KB 0.93 0.86 0.74 0.50 0.93 0.88
2KB 0.93 0.87 0.75 0.50 0.93 0.88
4KB - 0.87 0.75 0.50 0.87 0.88
8KB - 0.87 0.75 0.50 0.87 0.88
16KB - 0.87 0.75 0.50 0.87 0.88
32KB - 0.87 0.75 0.50 0.87 0.88
64KB - 0.87 0.75 0.50 0.87 0.86
128KB - 0.87 0.75 0.50 0.87 0.80
256KB - 0.87 0.75 0.50 0.87 0.77
512KB - 0.87 0.75 0.50 0.87 0.76
1MB - - 0.75 0.50 0.75 0.76

4 COUNTER-AS-ENCODING CONSTRUCTIONS

Now we will analyze various CaE schemes, such as AXU
hash, MAC and HAIFA hash function based on our CFFs.
In the last section, we defined prefix-free counter. For any
such prefix-free counter CTR and for all M , we know that
X1, . . . , Xb are distinct where CTR(M) = (X1, . . . , Xb).
With a slight abuse of notation, we let CTR(M) to denote
the set {X1, . . . , Xb}. Observe that prefix-free property does
not say anything about the collisions between the encoded
blocks of two distinct messages. Clearly we will have some
intersection between CTR(M) and CTR(M ′) (viewed as a
set) for any counter function family.
Definition 6. A prefix-free CFF CTR is called injective if for

all M 6= M ′, CTR(M) 6= CTR(M ′) (as a set).

Now we provide a sufficient condition for injective counter
function families.
Lemma 3. Let CTR be a prefix-free CFF. It is injective if it

satisfies the following condition

∀ `, `′ ≤ L, b(`) = b(`′)⇒ ctr` = ctr`′ .

Proof: Suppose for some M ∈ {0, 1}`,M ′ ∈ {0, 1}`′ ,
CTR(M) = CTR(M ′). We require to show that M = M ′.
Note that, CTR(M) = CTR(M ′) ⇒ {X1, . . . , Xb(`)} =
{X ′1, . . . , X ′b(`′)}. So b(`) = b(`′) = b. By given condition,
we have ctr` = ctr`′ and we denote it simply by ctr. Now
we first show that Xi = X ′i for all i. As two sets are equal
for any i ≤ b, there must exist j so that Xi = X ′j . This
implies that one of ctr(i) and ctr(j) is prefix of the other, and
hence i = j (as the counter function is block-wise collision-
free). Since counter functions for ` and `′ are same we have
Mi = M ′i for all i. This proves that M = M ′.

Recall that all our candidate CFFs are prefix-free. Further
it is obvious to see that they also satisfy the condition for
injectiveness. So we get the following corollary.
Corollary 1. CTR ∈ {STD,STDopt,VARr} is a prefix-free

and injective CFF.

In the following subsections we present various CaE
schemes. The security of all these schemes follow directly
from the prefix-free and injective property of the underlying
CFF. Specifically, all the security results in the following

subsections hold, when we instantiate these schemes with
CTR ∈ {STD,STDopt,VARr}.

4.1 Counter Based HAIFA

Let CTR be a CFF. We present a counter based HAIFA hash
function, called CtHAIFA, based on an n-bit (both blocksize
and keysize is n bits) Davis-Meyer compression function
DM. For a message M ∈ {0, 1}≤L, let h0 = IV (an n bit
constant) and

hi = DM(hi−1, Xi), ∀ i ∈ {1, . . . , b}

whereXi is the i-th element of CTR(M). We define CtHAIFA
based on CTR as,

CtHAIFA(M) = DM(hb, 〈|M |〉n).

Note that this definition is a bit different than the one
described earlier. Here we use 〈|M |〉n as the last block
instead of 〈0〉w‖Mb. This has been done just for the sake
of simplicity. The security result can also be proved for
the original definition with some additional notations. We
present our main result on CtHAIFA in the following the-
orem. We postpone the proof of this theorem to the next
section.

Theorem 4. Let CTR be a prefix-free and injective CFF.
Then, CtHAIFA has full second preimage security. More
specifically, for any second preimage adversary A that
makes at most q queries, we have

Adv2PI
CtHAIFA(A) ≤ 3q

2n
.

Remark 1. Although the fixed points in Davis-Meyer com-
pression functions can be easily computed, this does
not help in inverting any arbitrary hash value. This can
be argued as follows: Let hi be some hash value and
the adversary aims to compute a pair (hi−1,m) such
that DMe(hi−1,m) = hi. Suppose the adversary queries
(m, y) to the decryption oracle, then the probability
that e−1

m (y) = x such that em(x) ⊕ x = hi is at most
1/(2n − i+ 1).

Remark 2. Dean [52] showed an attack on the MD hash
function when the underlying compression function has
efficiently computable fixed points for random message
blocks. That attack cannot be extended to CtHAIFA as the
underlying CFF has block-wise collision free property.

Remark 3. In Crypto 2005, Coron et al. [24] proved that MD
hash with prefix-free encoding is indifferentiable from
a random oracle. Here prefix-free refers to the property
that the encoding of M is not a prefix of the encoding
of M ′, if M 6= M ′. Recall that a prefix-free CFF means
ctr`(i) is not a prefix of ctr`(j) if i 6= j. Not all encoding
schemes based on prefix-free counters are prefix-free
encodings. In fact length padding is necessary to get
prefix-free encodings.
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4.2 AXU Hash Function
Let CTR be a CFF. We define a counter based AXU-hash
function, denoted CtH, based on an n-bit pseudorandom
permutation EK and CTR. Let M ∈ {0, 1}`. We define

CtHEK ,CTR(M) = EK(X1)⊕ · · ·EK(Xb)

where CTR(M) = (X1, . . . , Xb). Note that this hash func-
tion is a generalization of the hash functions used in [4],
[5], [6]. It has a simple design that requires only Ek com-
putation and XOR operations. Furthermore the hash can be
computed completely in parallel. Now we show that if we
replace EK by a random permutation, we get an AXU hash
function. The proof is postponed to the next section.
Theorem 5. Let CTR be a prefix-free and injective CFF. Then,

CtHΠn,CTR is 2/2n-AXU hash if bCTR(L) ≤ 2n−1, where
L is the length of the largest message.

4.3 MAC
Now that we have an AXU hash function, we can apply
standard methods, such as Hash-then-PRF and Hash-then-
Mask, to obtain MAC schemes from CtH. Let CTR be a CFF.
Given any M ∈ {0, 1}` with ` > n, we write M = M ′‖m
where m is a block. We define

CtMac1Πn,Π′n(M) = Π′n(CtHΠn
(M ′)⊕m)

CtH is an AXU hash function when CTR is prefix-free and
injective. So the modified scheme CtHΠn(M ′) ⊕ m is a
universal hash when CTR is prefix-free and injective. Hence
we can apply composition theorem to show that CtMac1 is
a pseudorandom function. We have the following theorem.
Theorem 6. Let CtMac1 := CtMac1EK1

,EK2
be defined based

on two independently chosen keyed blockcipher, and let
CTR be a prefix-free and injective CFF. Then,

Advprf
CtMac1(t, q, ˆ̀) ≤ q2

2n−1
+ Advprp

E (t′, ˆ̀q)

The proof of theorem 6 follows directly from theorem 1
and 5. The above construction is deterministic.

CtMAC1 is based on HtPRF paradigm. Now we use HtM
paradigm to define probabilistic and stateful MACs that
are motivated from XOR-MACs. Let R be a seed (either
random or nonce). We define CtMac2EK1

,EK2
(R,M) =

EK2
(R) ⊕ CtHEK1

(M). By using Theorem 2 we can have
following results on the MAC security if probabilistic and
stateful CtMac2.
Theorem 7. Let CtMac2 := CtMac2EK1

,EK2
be defined based

on two independently chosen keyed blockcipher. Then,

Advforge

CtMac2st(t, qm, qv, ˆ̀) ≤
0.5q2

2n
+Advprp

E (t′, ˆ̀(qm+qv))+
qv
2n

Advforge

CtMac2$
(t, qm, qv, ˆ̀) ≤

q2

2n
+Advprp

E (t′, ˆ̀(qm + qv))+
qv
2n

Remark 4. Note that CtMAC2 can be shown to have full
MAC security [4] when instantiated with a random func-
tion. The security reduces to q2/2n when block ciphers
are used for instantiation. This is due to the PRF-PRP
switching lemma (Equation 1). Since we give a concrete
implementation of stateful MAC based on AES block
cipher, we have to switch from PRF to PRP model.

4.4 Necessity of Prefix-free and Injectivity
In all the security results discussed in this section, the
security proof is implied by the prefix-free and injective
property of the CFF CTR. In other words, prefix-free and
injective properties are sufficient for security. Now we show
that these properties are also necessary in case of CtH,
CtMAC1 and CTMAC2.

Case 1: Suppose CTR doesn’t have injective prop-
erty. As CTR is a deterministic function (encodings
are deterministic), one can easily find two distinct
messages M,M ′ such that CTR(M) = CTR(M ′).
Case 2: Suppose CTR is not prefix-free, i.e., for
some ` ≤ L, we have i < j ∈ N such that ctr`(i)
is a prefix of ctr`(j). Thus, we can find two pairs
(c, c′) and (d, d′) such that ctr`(i)‖c = ctr`(j)‖c′ and
ctr`(i)‖d = ctr`(j)‖d′. Using these two pairs we can
construct two distinct messages M and M ′ such
that the i-th encoded block collides with the j-th
encoded block for both M and M ′, i.e., they cancel
out each other in CtH(M) and CtH(M ′).

Therefore in both the cases we can find M,M ′, such that
Pr[CtH(M) ⊕ CtH(M ′) = 0] = 1. This leads to trivial
forgery attacks on CtMAC1 and CtMAC2. Hence prefix-free
and injective property are necessary.

5 SECURITY PROOFS OF CTHAIFA AND CTH
5.1 Proof of Theorem 4 [2PI Security of CtHAIFA]
We use a similar approach as used in [12] for HAIFA
based on random oracle. Let A be a second preimage
adversary for CtHAIFA that makes q distinct queries to
the underlying ideal cipher. Note that in the ideal cipher
model, A can make both encryption and decryption queries
to the underlying block cipher. We also assume that the
adversary computes CtHAIFA(M). The adversary can do
this by making encryption query (Mi, hi−1) and storing
(hi−1,Mi, hi := eMi

(hi−1) ⊕ hi−1) for all i ∈ [b]. Actually
A can compute any DM(h,m) by making encryption query
(m,h) to e. Let the sequence of intermediate chaining values
for the challenge message M be (h0, h1, . . . , hb, hb+1).

We denote the i-th query of A by the tuple
(xi,mi, ci, yi, oi) such that ci is the counter value, mi is
the message value, xi is some chaining value, and yi =
DM(xi, ci‖mi)⊕ xi. Further,

1) if the i-th query is an encryption query then oi = 0
and A queried ci‖mi, xi and got yi := eci‖mi

(xi).
2) if the i-th query is a decryption query then oi = 1

and A queried ci‖mi, yi and got xi := e−1
ci‖mi

(yi).

Now suppose that A produces a valid second preimage
M ′. We denote this event by Win. Let Win1 and Win2 denote
the events Win ∧ |M | 6= |M ′| and Win ∧ |M | = |M ′|,
respectively. Clearly Win = Win1 ∪Win2. Therefore,

Pr[Win] ≤ Pr[Win1] + Pr[Win2].

We bound the two events as follows:

1) If Win1 is true then |M | 6= |M ′ |. In this case we
must have 〈|M |〉n 6= 〈|M

′ |〉n. Therefore the adver-
sary found a second preimage for the last block,
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i.e., there exist a query i ∈ {1, . . . , q} such that
ci‖mi = 〈|M ′|〉n 6= 〈|M |〉n and yi ⊕ xi = hb+1.
This is possible with probability 1

2n−i+1 . Bounding
over q queries we have Pr[Win1] ≤ q

2n−q .
2) If Win2 is true then |M | = |M ′ |. In this case,

if A succeeds, then A was successful in creating
a connection to some intermediate chaining value
hj . Suppose this connection is established at the
i-th query, then ci must be equal to ctr`(j) and
yi ⊕ xi = hj . This probability is again 1

2n−i+1 .
Bounding over q queries we have Pr[Win2] ≤ q

2n−q .

Combining 1 and 2 we have,

Pr[Win] ≤ 2q

2n − q
≤ 3q

2n
.

The result follows.

5.2 Proof of Theorem 5 [AXU security of CtH]
Let M 6= M ′ and CTR(M) = S = {X1, . . . , Xb},
CTR(M ′) = S′ = {X1, . . . , Xb′}. As CTR is injective, there
exists at least one block X which appears exactly once in S
or S′. Thus, for any δ ∈ {0, 1}n,

Pr[CtHΠn,CTR(M)⊕ CtHΠn,CTR(M ′) = δ]

= Pr[Πn(X) = ⊕x∈S1∪S2\{X}Πn(x)].

The result follows by conditioning on the outputs
of the random permutation on all blocks except X .

Remark 5. Note that the above result has been proved
implicitly in [4], [5], [6] for the standard counter. Our
result generalizes their results for any prefix-free and
injective counter function family.

6 COMPARISON AND EMPIRICAL RESULT

In this section, we compare the performance of the three
candidate counter function families via their application in
different CaE schemes. In particular, we present pipelined
software implementation of counter based MACs, and se-
rial implementation of HAIFA based on DM compression
function. We instantiate the MAC and DM compression
function using AES-128 [53] block cipher. AES cipher is
used to exploit the AES-NI instruction set available on
new generation Intel microprocessors. The source code is
publicly available at [54].

6.1 Platform Setup
As mentioned earlier we use AES-128 (key size 128 bits)
as the underlying block cipher. We use performance data
for all inputs of length ` = 2k bits where 7 ≤ k ≤ 20.
We implemented all the schemes on Intel’s Sandy Bridge
microarchitecture using AES-NI and SSE4 intructions. All
measurements were taken on a single core of Intel Xeon E5-
2640 processor at 2.5Ghz with Turbo Boost disabled. The
warmup parameter is 250000 and the data is averaged over
1000000 repetitions. All results will be either in number of
cycles per byte or number of cycles. The baseline perfor-
mance for AES using AES-NI instruction set is presented in
Table 2.

TABLE 2: Baseline CPB of AES using AES-NI.

encryption key scheduling
(cycles/byte) (cycles)

(AES, serial) 6.7 117
(AES, parallel) 0.69 117

6.2 Implementing Counter Function Families
The three counter function families basically differ in their
selection of counter sizes. STDs is a standard counter with
a fixed size s; STDopt computes the (optimal) counter size
s based on the length of the input; and VARr dynamically
changes the counter size s based on the number of input
blocks processed so far.

In a practical application STDs requires a beforehand
heuristic on the typical input lengths to be encountered.
In situations where the input lengths are inconstant, this
scheme may not be that efficient. If the input length is
known beforehand, then STDopt is the best option as it
fixes the optimal (machine-dependent) counter size. VARr

has an edge over the other two in the worst case scenario,
i.e., when neither the input length is known nor the inputs
have predictable lengths. This scenario is quite frequent in
server-side applications.

Although STDopt and VARr are much more flexible in
terms of the changes in the input length, they do require
some book-keeping operations. STDopt requires the compu-
tation of a suitable counter size for the given input length.
Similarly, VARr requires some kind of mechanism to update
the counter size when the current counter reaches its limit.

STDs does not incur such book-keeping overheads, as it
is fixed for the construction. Thus, STDs with s = 32 uses
32-bit counter irrespective of whether the input size is 210

or 220 bits. For STDopt, we pre-store the set of counter sizes
({8, 16, 32, 64}) along with their respective maximum input
lengths. Although this incurs a small increment in code size,
it reduces the number of micro-operations. For VARr , the
overhead can be reduced significantly by reducing the num-
ber of times the counter size is increased. For example, we
increase the size in steps of multiple of 8 · 2i (i.e. 8,16,32,64)
(instead of 8 · i). All three counters were implemented in
64-bit registers.

Table 3 gives the book-keeping cost incurred by the three
counters. The cost for STDopt is significantly lower than
the other two candidates as in this case the major book-
keeping operation is executed only once per message. For
VARr and STDs the check for last message block accounts
for most of the book-keeping cost. VARr has a complex
counter update mechanism as compared to STDs. This leads
to a further increase in its book-keeping cost. Fig. 4 presents
these characteristics graphically.

6.3 Performance of MACs
We summarise the performance results of the deterministic
MACs in Table 4 and the stateful MACs in Table 5. We de-
liberately leave out the performance results for probabilistic
MAC, as apart from the random number generation phase,
it is exactly similar to the stateful MAC. Fig. 5 and 6 give
graphical characteristics of the performance data. STDs is
implemented for s = w · 2i, where w = 8 bits is the word
size, and i is varied over {0, 1, 2, 3}. Similar values are used
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TABLE 3: Cycles per byte comparison between the book-keeping
operations performed by the three CFF candidates.

Length
STDs

STDopt,8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 0.17 0.20 0.22 0.27 0.33 0.18
256B 0.15 0.17 0.18 0.27 0.18 0.17
512B 0.14 0.15 0.16 0.23 0.13 0.15
1KB 0.13 0.14 0.16 0.22 0.09 0.15
2KB 0.14 0.13 0.15 0.22 0.09 0.15
4KB - 0.14 0.15 0.22 0.10 0.16
8KB - 0.14 0.16 0.22 0.09 0.16
16KB - 0.13 0.15 0.22 0.09 0.15
32KB - 0.14 0.15 0.22 0.09 0.15
64KB - 0.14 0.16 0.22 0.09 0.16
128KB - 0.14 0.16 0.22 0.09 0.17
256KB - 0.16 0.18 0.23 0.09 0.18
512KB - 0.17 0.19 0.24 0.09 0.19
1MB - - 0.19 0.24 0.08 0.19
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Fig. 4: CPB plot for book-keeping operations.

in STDopt and VARr while choosing (or expanding) the
counter size.

TABLE 4: Cycles per byte comparison between the software perfor-
mance of the three CtMAC1 candidates.

Length
STDs

STDopt,8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 1.26 1.74 1.79 1.96 1.37 1.24
256B 1.25 1.26 1.29 1.74 1.27 1.26
512B 1.00 1.02 1.18 1.63 1.00 1.03
1KB 0.88 0.98 1.07 1.57 0.88 0.91
2KB 0.83 0.92 1.05 1.54 0.79 0.91
4KB - 0.90 1.02 1.52 0.86 0.89
8KB - 0.88 1.01 1.51 0.83 0.87
16KB - 0.88 1.00 1.51 0.83 0.88
32KB - 0.88 1.01 1.51 0.82 0.87
64KB - 0.88 1.00 1.51 0.81 0.89
128KB - 0.87 1.00 1.51 0.82 0.95
256 KB - 0.87 1.01 1.51 0.82 0.98
512KB - 0.88 1.01 1.51 0.82 1.00
1MB - - 1.01 1.51 0.95 1.01

Some notes on the characteristics. It is evident from Fig. 5
and 6 that STDopt gives the fastest MACs among all the
three candidates. Also observe that when the input length is
comparable to the counter size both STDs and VARr closely
resemble the performance curve for STDopt. For instance, in
Table 4, look at the entries corresponding to the range 8 KB
(216) to 64 KB (219 bits). In this range all three counters offer
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Fig. 5: CPB plot for the three CtMAC1 candidates.

similar cpb of around 0.8-0.9.
For a fixed value of s in STDs, VARr outperforms STDs,

until the input length is significantly smaller than 2s, or the
counter size in VARr is smaller than s. For example, for
s = 32 VARr is faster than STDs, when the input length
` ≤ 128KB (220 bits). At 256 KB, the counter size in VARr

expands to 32 bits which causes a change in the slope of
the curve. Even when the input length lies in the optimal
range the gain in using STDs is marginal when compared
to the flexibility offered by VARr over a diverse range of
input lengths.

Note that the effective counter size in VARr is always
r bits less than the actual counter size. This is because the
first r bits are reserved. For example when the counter size
is 16 bits, only 12 bits are used. This reduces the maximum
message length for 16-bit counter from 223 bits to 219 bits.

TABLE 5: Cycles per byte comparison between the software perfor-
mance of the three CtMAC2st candidates.

Length
STDs

STDopt,8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 1.21 1.28 1.47 2.05 1.31 1.23
256B 1.03 1.11 1.30 1.74 1.07 1.04
512B 0.94 1.04 1.11 1.62 0.94 1.00
1KB 0.91 0.92 1.08 1.58 0.87 0.94
2KB 0.84 0.90 1.03 1.54 0.79 0.89
4KB - 0.89 1.02 1.53 0.85 0.88
8KB - 0.88 1.01 1.52 0.82 0.87
16KB - 0.88 1.01 1.51 0.82 0.87
32KB - 0.87 1.01 1.51 0.82 0.87
64KB - 0.87 1.00 1.51 0.81 0.89
128KB - 0.87 1.00 1.52 0.81 0.95
256KB - 0.87 1.00 1.52 0.81 0.99
512KB - 0.88 1.01 1.52 0.82 1.01
1MB - - 1.01 1.52 0.95 1.02

6.4 Performance of HAIFA
We summarise the performance results of CtHAIFA in Ta-
ble 6. The graphical representation is illustrated in Fig. 7.
The comparison results are similar to those obtained earlier,
in case of deterministic MACs and stateful MACs.

7 CONCLUSION

In this paper we presented a generalized notion of counter
function families. We also tried to formalize the crypto-
graphically significant properties required from a counter
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Fig. 6: CPB plot for the three CtMAC2st candidates.

TABLE 6: Cycles per byte comparison between the software perfor-
mance of the three CtHAIFA candidates.

Length
STDs

STDopt,8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 7.42 8.16 8.96 13.83 7.64 7.58
256B 7.37 7.76 8.95 13.33 7.31 7.47
512B 7.17 7.55 8.69 13.15 7.00 7.53
1KB 7.02 7.55 8.71 13.07 6.92 7.65
2KB 6.95 7.48 8.63 13.03 6.88 7.62
4KB - 7.43 8.65 13.00 7.43 7.59
8KB - 7.40 8.61 12.92 7.42 7.57
16KB - 7.42 8.61 12.95 7.42 7.60
32KB - 7.43 8.63 12.99 7.41 7.62
64KB - 7.41 8.64 12.97 7.41 7.78
128KB - 7.41 8.65 12.98 7.41 8.37
256KB - 7.42 8.66 12.99 7.42 8.66
512KB - 7.44 8.67 12.99 7.43 8.82
1MB - - 8.66 12.99 8.65 8.90

scheme. Based on these properties we gave straightforward
proofs for some CaE schemes such as HAIFA hash function,
XOR universal hash and MACs.

Further we presented two efficient alternatives for the
standard counter scheme. One of these alternatives, namely,
the VARr counter function family is a nice application of
universal codes in cryptography. To the best of knowledge
this relationship has not been studied before. Finally we
gave software comparison of MAC and HAIFA construc-
tions based on the three counter function families. Based
on our findings we can set the following guidelines for
choosing one among the three counter function families for
a specific area of application:

1) STDopt is the best option when the input length is
known beforehand.

2) If the input length is not known:

a) VARr is better when the message length can
vary arbitrarily over a wide range.

b) STDs works best when the average input
length is close to the application limit.

In general, VARr seems to be the best candidate that works
for wide range of input lengths with comparable perfor-
mance curve.
The paper shows following new research directions.

1) Parallel vs Serial mode. In this paper we defined a
general notion of counter function families and then
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Fig. 7: CPB plot for the three CtHAIFA candidates.

studied prefix-free and injective counters. Although
we studied HAIFA hash function which is a serial
mode CaE scheme, our study was mainly motivated
by those parallel mode CaE schemes such as XOR-
MAC [4] and LightMAC [6]. We showed that prefix-
free and injective properties are necessary for these
parallel mode of operations. It would be interesting
to investigate whether the prefix-free property can
be relaxed in case of serial mode of operation.

2) New CFF schemes. We have shown a general way
of using universal codes as CFFs. Can we have other
such generic techniques? Also, it would be interest-
ing to further investigate the CFFs mentioned in this
paper.

3) Application in CaI schemes. Although counter size
does not affect the rate of CaI schemes, it would
be interesting to see whether we can get some ad-
vantage by replacing the standard counter function
with one of STDopt or VARr . One can also investi-
gate generic proof techniques for CaI schemes based
on CFF properties.
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