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Abstract Recently, Andreeva et al. showed that online ciphers are actually equivalent to
arbitrary tweak length (ATL) tweakable block ciphers (TBCs). Within this result they gave
a security preserving generic conversion from ATL TBCs to online ciphers. XTX by Mine-
matsu and Iwata is a nice way of extending the tweak space of any fixed tweak length (FTL)
TBC using a pAXU hash function. By combining the previous two methods one can get a
FTL TBC based online cipher with security in the order of σ 2ε where σ is the total num-
ber of blocks in all queries, and ε is the pAXU bound of the underlying hash function. In
this paper we show that there are genuine practical issues which render it almost impossible
to get full security using this approach. We then observe that a recent online enciphering
scheme called POEx by Forler et al. is actually an implicit example of this approach. We
show a flaw in the analysis of POEx which results in a birthday bound attack and inval-
idates the beyond-the-birthday bound OSPRP security claim. We take a slightly different
approach then the one just mentioned and propose XTC which achieves OSPRP security of
O(max(nσ2−n, σ 22−(n+t))) where t is the tweak size and n is the block size. While doing
so we present an impossibility result for t > n which can be of independent interest.
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1 Introduction

ONLINE CIPHERS In low-memory devices and continuous data streaming platforms, it
is often desirable to produce encrypted data in online fashion, i.e. the encryption of the
current data block should only depend on the previous data blocks. In such scenarios the
online property is desirable. Paraphrasing the informal definition by Rogaway and Zhang
[32], an encryption scheme is said to satisfy the online property if (1) it can be realized by
an algorithm that, for any input, read its input blocks one at a time in order and computes
the corresponding output blocks one at a time in order, and (2) it uses only a constant-bound
amount of memory and/or latency. The introductory definition by Bellare et al. [6] satisfied
(1), which was later strengthened by Boldyreva and Taesombut [12] to satisfy (2).

Symmetric-key schemes are inherently probabilistic in the sense that the security relies
on the randomness of the secret key. The language of provable security itself relies heavily
on the tools and concepts from the field of probability theory. For instance the usual notion
of security for a general enciphering scheme, as defined by Luby and Rackoff [25], requires
it to be indistinguishable (have a negligible computational distance, or statistical distance
in information-theoretic settings) from a uniform random permutation. In other words, it
should be a good pseudorandom permutation or PRP. It is trivial to see that online ciphers
are not PRPs. For an ideally secure cipher every bit of the ciphertext should depend on every
bit of the plaintext and vice-versa - a requirement which invalidates the online property.
The appropriate security notions of online ciphers are online PRP (OPRP) and online SPRP
(OSPRP) [6], which require indistinguishability from a uniform online random permutation.
But even with this relaxed notion of online random permutations, there are scenarios where
an ideal online (S)PRP can be completely vulnerable. Hoang et al. [22] demonstrated such
a vulnerability through their chosen-prefix secret-suffix (CPSS) attack. Such attacks are
impossible for an ideal PRP.

Although online ciphers satisfy a relaxed security notion which does not serve all scenar-
ios, they are highly valuable in practice, for they allow single-pass and on the fly encryption
of plaintexts. This is of particular interest in applications with high-throughput demands and
low memory buffer such as the OpenSSL EVP DecryptUpdate interface as noticed in [18].
Most prominently online ciphers are used in authenticated encryption to dilute the effect of
nonce misuses [1, 4, 13, 16]. Amanatidis et al. [2] used online ciphers to solve a database-
security problem. Recently, Andreeva et al. [3] showed yet another application for online
ciphers, as a primitive to build offline (usual) cipher.

(TWEAKABLE) BLOCK CIPHER BASED ONLINE CIPHERS. In their foundational paper
Bellare et al. [6] proposed CBC like constructions, viz. HCBC1 and HCBC2, both of which
employed one call to block cipher and one call to an almost XOR universal (AXU) hash
function. HCBC1 and HCBC2were shown to have birthday bound OPRP security, and birth-
day bound OSPRP security, respectively. HPCBC, proposed by Boldyreva and Taesombut
[12], was a variant of HCBC2 that prepends the encryption of a random IV in order to fit a
stronger notion. Nandi [28, 29] proposed simpler proofs for HCBC1 and HCBC2, and gave
two improved schemes called MHCBC and MCBC. Among these MCBC has the feature of
replacing the call to a hash function by a second call to the block cipher.

In [32] Rogaway and Zhang proposed three schemes, namely TC1, TC2, and TC3, based
on tweakable block ciphers (or TBCs) [24]. These schemes exploited the additional tweak
input of TBCs to eliminate theadditional calls to hash function/block cipher. In an independent
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work Fleischmann et al. [17] presented a scheme called McOE-G which is similar to TC3,
albeit with a more practical handling of arbitrary length inputs.

For a variant of online property called diblock-online, Bhaumik and Nandi [10] gave
an inverse-free construction called OleF, that achieved diblock-online SPRP security. Apart
from these, several online ciphers were also proposed within full fledged authenticated
encryption schemes [1, 4, 5, 13, 16]. Recently, Forler et al. [18] proposed an online cipher
POEx that claims beyond-the-birthday bound (BBB) security.

1.1 Motivation

A recent work of Andreeva et al. [3] shows that online ciphers are equivalent to arbitrary
tweak length (ATL) TBCs. Although this result is more of theoretical interests, the TBC to
online cipher converter can be coupled with XTX [27] to get an efficient online cipher (see
Section 3). As we see later, a naive approach in using this converter will result in a loss in
factor of � (maximum permissible length of any message). Forler et al. [18] implicitly used
this converter in POEx. But we show a critical flaw in their analysis which invalidates the
security claim of POEx. Apparently avoiding some loss in the security is a non-trivial task.

We would like to note here that getting an optimally secure and efficient online cipher
based on normal block ciphers is almost impossible in standard model. A recent result by
Mennink [26] shows that it is impossible to get optimally secure TBCs via block ciphers in
the standard model. This can be easily extended over to online ciphers using the equivalence
result by Andreeva et al. [3]. In light of these recent works, it would be interesting to explore
the possibility of an (almost) optimally secure and efficient (in some sense) online cipher
based on TBCs.

1.2 Our contribution

In the following discussion, t and n denote the tweak and block size, respectively. Our
contributions are threefold. First, as a prolog to our later analysis, in Section 3 we derive
a practical instantiation of Andreeva et al.’s [3] TBC to online cipher converter using XTX
[27], which is implicitly used in [18]. We discuss its limitation in achieving efficiency and
optimal security at the same time. Second, in Section 4 we show a flaw in the security
analysis of POEx (see Section 4). We exploit this flaw to get a birthday attack on POEx
which invalidates the security claim. Third, in Section 5 we explore the possibility of a
more efficient way of realizing the generic TBC to online cipher converter [3]. We show
an impossibility result which implies that the task is hard for t > n. We then propose XTC,
an update over POEx that achieves min(2n/n, 2(n+t)/2) block-queries security using a fixed
tweak length (FTL) TBC (see Section 5). Table 1 compares XTCwith existing online ciphers
(both standalone and encryption phase of online misuse resistant AE schemes).

Our attack on POEx and the impossibility result use certain special features of the proba-
bility distributions of random mappings over ranked nodes and online ciphers, respectively.
In case of the attack on POEx we show that random mappings over ranked nodes converge
to a single fixed value when iterated. In case of the impossibility result we show that it is
much more probable to get collisions of special types on online ciphers as compared to a
general cipher. These results are examples in a long list of other such instances in literature
which use statistical and probabilistic tools in symmetric-key provable security.
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2 Preliminaries

2.1 Basic notations and conventions

Throughout this paper we fix n and t as positive integers denoting block and tweak size.
We sometime use the adjective fresh for a variable which is distinct from all the previous
variables. We write x � y to denote “x such that y”. For integers a ≤ b, we let [a..b] =
{a, . . . , b} or simply [b] when a = 1.

If x is a vector (or a sequence or a string) then |x| denotes its length, and xi denotes its
i-th coordinate. We let ⊥ denote the empty vector, which has length 0. If 0 ≤ i ≤ |x|, then
we let x≤i = (x1, . . . , xi), this being ⊥ when i = 0. For any two strings x and y over a set
S , x‖y denotes the concatenation of x and y. If z = x‖y, then x and y are called the prefix
and suffix, respectively of z.

Within oracle interactions, we write the i-th query instance of some variable X by Xi .
Accordingly the j -th coordinate of the i-th query instance of X is written as Xi

j .

For any set S , we let S i denote the set of all i length vectors over S . We let S ≤� =
∪�

i=1S
i , S + = ∪∞

i=1S
i , and S ∗ = ∪∞

i=0S
i . We let B := {0, 1}n and T := {0, 1}t ,

where the elements of {0, 1}, B, and T are called bits, blocks, and tweaks respectively.
Some times we also view blocks as integers in

[
0..2n − 1

]
. For a set S , X ←$ S denotes

the uniform random sampling of X from S .

2.2 Universal hashing

A hash function family H is a (K ,D,R)-family of functions {Hk := H(k, ·) : D →
R}k∈K defined over its domain or message space D , digest or hash space R and indexed
by the key space K .

Definition 1 (ε-almost-XOR-universal hash function) A (K ,D,B)-hash family H is
called ε-almost-XOR Universal (or AXU), if for any two distinct x and x′ inD and a δ ∈ B,
the differential probability is at most ε. In other words, we have

diffH := max
x =x′,δ

Pr
K

[HK(x) ⊕ HK(x′) = δ] ≤ ε,

where the random variable K is uniformly distributed over the set K .

Multi-linear hash [21, 33] and PDP hash [11, 21, 23, 37] are some examples of AXU
hash functions.

When δ = 0, the 0-differential event is equivalent to collision. So we rewrite diffH as
collH , and we call it the maximum collision probability.

Definition 2 (ε-almost-universal hash function) A (K ,D,B)-hash family H is called
ε-almost universal (or ε-AU) if

collH := max
x =x′ PrK [HK(x) = HK(x′)] ≤ ε.

Almost (XOR) universal hash functions were described by Wegman and Carter [14, 36]
and Gilbert et al. [20], followed by investigations by Stinson [34, 35].
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Minematsu and Iwata [27] introduced the notion of ε-partial-almost-XOR-universal hash
functions to capture simultaneous collision and differential events on two distinct parts of
any hash digest. This will be useful for our later analysis of POEx and XTC.

Definition 3 (ε-partial-almost-XOR-universal hash function) A (K ,D,T × B)-hash
family H is called ε-partial-almost-XOR-universal (or ε-pAXU) if

coll-diffH := max
x =x′,δ

PrK [HK(x) ⊕ HK(x′) = (0, δ)] ≤ ε.

We accumulate some easily verifiable properties of AXU hash functions in Proposition 1.
These properties will aid our later work.

Proposition 1 For A(X)U hash functions we have

1. Any ε-AXU hash function is an ε-AU hash function.
2. The concatenation H1‖H2 of an ε1-AU hash H1, and an ε2-AXU hash H2 is an ε1ε2-

pAXU hash function when the hash keys for H1 and H2 are sampled independently.
3. The m-bit truncation of an ε-AXU hash function is (2n−m · ε)-AU hash function.

2.3 Adversaries and advantage

An adversary A is an efficient Turing machine that interacts with a given set of oracles in
black box fashion. For an oracle O , AO denotes A’s interaction with O . For an oracle O ,
O± denotes the bidirectional access to the underlying function and its inverse. In this work
we always see A as a distinguisher which tries to detect the output distribution of some
oracle and outputs a single bit after its interaction with the given oracle(s). Without loss of
generality, we assume that A never asks queries to which it already knows the answer. We
write Expdist

A,O for the random experiment (a Bernoulli trial) that runs a DIST-adversary A
with the oracle O , where DIST denotes a distinguishing model like PRP, SPRP, PRF etc.
We write

AdvdistO1;O2
(A) :=

∣∣∣Pr
[
Expdist

A,O1
⇒ 1

]
− Pr

[
Expdist

A,O2
⇒ 1

]∣∣∣

to denote the DIST advantage of A in distinguishing O1 from O2. All probabilities are
defined over the random coins of the oracles and those of the adversary, if any. In general
O2 will be clear from DIST’s context, hence we will drop it from the subscript. We will
provide code-based descriptions of the oracles, called games, according to the game-playing
framework by Bellare and Rogaway [7, 8].

2.4 Tweakable block cipher

A tweakable block cipher Ẽ with associated key space K , tweak space T , and message
space B is a mapping Ẽ : K × T × B → B such that for every key K ∈ K and
tweak T ∈ T , it holds that ẼT

K(·) := ẼK(T , ·) := Ẽ(K, T , ·) is a permutation over B.
We let Tperm(T ,B) to be the set of all tweakable permutations over B with tweak space
T , and Π̃ ←$ Tperm(T ,B). Let Exptsprp

A,O be an experiment which outcomes 1 if AO

outputs 1, and 0 otherwise, where A is a Tweakable Strong Pseudorandom Permutation
(TSPRP)-adversary. The TSPRP advantage of A against Ẽ is defined as

Advtsprp
Ẽ

(A) :=
∣∣
∣∣ Pr
K←$K

[
Exptsprp

A,Ẽ±
K

⇒ 1

]
− Pr

[
Exptsprp

A,Π̃± ⇒ 1
]∣∣
∣∣ .
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Let A(q, τ ) be the class of all adversaries with runtime at most τ , and number of queries
at most q. For ε ∈ [0, 1], Ẽ is called a (q, τ, ε)-TSPRP if and only if,

Advtsprp
Ẽ

(q, τ ) := max
A∈A(q,τ )

Advtsprp
Ẽ

(A) ≤ ε.

2.5 Online cipher

An online cipher O with associated key space K and message space B∗ is a mapping O :
K ×B∗ → B∗ such that for every key K ∈ K , OK(·) := O(K, ·) is a length-preserving
permutation over B∗ and OK(X) is a prefix of OK(Y ) if and only if X is a prefix of Y . We

letOperm(B∗) to be the set of all online permutations overB∗, and
→
Π←$ Operm(B∗). Let

Exposprp
A,O be an experiment which outcomes 1 if AO outputs 1, and 0 otherwise, where A is

an Online Strong Pseudorandom Permutation (OSPRP)-adversary. The OSPRP advantage
of A against O is defined as

AdvosprpO (A) :=
∣
∣
∣
∣ Pr
K←$K

[
Exposprp

A,O±
K

⇒ 1

]
− Pr

[
Exposprp

A,
→
Π

± ⇒ 1

]∣
∣
∣
∣ .

LetA(q, �, σ, τ ) be the class of all adversaries with runtime at most τ , number of queries
at most q, maximum query length at most �, and the total length over all queries at most σ

(also referred as block-queries). For ε ∈ [0, 1], O is called a (q, �, σ, τ, ε)-OSPRP if and
only if,

AdvosprpO (q, �, σ, τ ) := max
A∈A(q,�,σ,τ )

AdvosprpO (A) ≤ ε.

In this work we will generally consider computationally unbounded adversaries. Without
loss of generality, it suffices to only focus on deterministic adversaries, as for any proba-
bilistic adversary there exists a deterministic one with at least the same advantage, and we
will assume so henceforth.

3 Toward a general design strategy for BBB online ciphers using TBCs

Rate of any cryptographic scheme is defined as the ratio of the number of blocks in any
input to the number of primitive (TBC in this case) calls for that input. In most of the cases
rate is independent of the input. A rate ≥ 1 scheme will, in general, be more efficient then a
rate 1

2 scheme when identical primitives are employed. From now onwards, we use rate and
number of field multiplications as our parameters for efficiency.

This section serves as a prolog for later analysis of POEx and XTC. In this section we
discuss the equivalence between online ciphers and TBCs shown by Andreeva et al. [3].
We also demonstrate how a simple practical instantiation can be given by using XTX. We
then observe how a combination of practical (read efficiency) issues render it non-trivial to
convert the theoretical construction of [3] in practice.

3.1 The iterated TBC view of online ciphers

In a recent work [3] on a generic construction of offline ciphers using online ciphers as
primitives, Andreeva et al. made the following useful observation:

an ideal online cipher is equivalent to an ideal ATL TBC.
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We reproduce their result in Theorem 1.

Theorem 1 ([3, Theorem 1]) There is a security preserving one-to-one correspondence
between online ciphers on B+ and tweakable block ciphers on B with tweak space B∗.

While a more detailed proof is available in [3], we describe their generic construction of
online cipher based on a tweakable block cipher with arbitrary tweak space. Let ẼK be a
TBC with tweak space B∗ and block space B. We define an online cipher O[Ẽ] over B+
as ∀� ≥ 1, ∀x := (x1, . . . , x�) ∈ B�,

O[Ẽ](x) := Ẽμ
K(x1)‖Ẽx1

K (x2)‖ · · · ‖Ẽx<i

K (xi)‖ · · · ‖Ẽx<�

K (x�).

One can easily verify that,

Advosprp
O[Ẽ] (q, σ, τ ) ≤ Advtsprp

Ẽ
(σ, τ ′) (1)

where τ ′ = τ +O(σ). Specifically when we replace Ẽwith an ideal ATL tweakable random
permutation ˜Π we get Advosprp

O[˜Π](q, σ, τ ) = 0. A minor variant of the above mentioned con-

struction may also consider the previous ciphertext blocks along with the plaintext blocks,
i.e., tweak for the i-th block is (x<i,O[Ẽ](x<i)), and the modified definition is,

O[Ẽ](x) := Ẽμ
K(x1)‖Ẽ(x1,O[Ẽ](x1))

K (x2)‖ · · · ‖Ẽ(x<i ,O[Ẽ](x<i ))
K (xi)‖ · · · ‖Ẽ(x<�,O[Ẽ](x<�))

K (x�).

It is not hard to see that this does not give any added security advantage. But the utility
of this modification will become more apparent as we proceed. Thus any online cipher can
be viewed as a chain of iterated TBC. We call this equivalent view of online ciphers, the
iterated TBC view of online cipher.

3.2 O[XTX]: Moving from Theory to Practice

Given the strong security guarantee of (1) and rate 1 construction, it is only natural to look
for practical instantiations. The next immediate question is: how can we instantiate an ATL
TBC based on an FTL TBC.

XTX [27] by Minematsu and Iwata is an elegant way of extending the tweak length of
an FTL TBC. At the highest level, XTX employs a pAXU hash which takes a tweak value
of arbitrary length as input and computes a fixed length tweak and input/output masking
for the underlying FTL TBC. Formally, let H : B∗ → T × B be an ε-pAXU. The hash
output H(T ) is parsed into Htwk(T )‖Hmsk(T ). Using this pAXU and a TBC Ẽ over the
tweak space T , XTX is defined as

XTXT
K(x) = Ẽ

Htwk(T )
K (x ⊕ Hmsk(T )) ⊕ Hmsk(T ).

In [27], Minematsu and Iwata have shown the following upper bound on the TSPRP
advantage of XTX.

Theorem 2 AdvtsprpXTX (σ, τ ′) ≤ Advtsprp
Ẽ

(σ, τ ′′) + εσ 2, where τ ′′ = τ ′ + TimeH × O(σ).
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By using (1) and Theorem 2, we obtain a construction O[XTX] with OSPRP advantage
at most Advtsprp

Ẽ
(σ, τ ′′) + εσ 2. At this point we would like to emphasize that POEx is an

implicit example of O[XTX]. Although O[XTX] is simple (both in description and security
proof), it requires very strong bound on ε, close to 2−(n+t). Now we describe how this
becomes an issue when coupled with the need for efficiency.

Security degradation and Hash Key. Note that H : B∗ → {0, 1}n+t is required to
be ε-pAXU for some ε. If we keep hash key size to be n + t then ε′ ≥ �′/2n+t where
�′ = �n/(n + t) (the number of (n + t)-bits present in � block inputs). We can achieve
this bound by considering polyhash defined over (n+ t)-bit binary field. If we plug this
ε we obtain a bound of the form �σ 2/2n+t . To get rid of the � factor we need to apply
hash functions with larger hash key such as Pseudo dot product [11, 21, 37], multi-linear
hash [14, 20, 33], and EHC [30], which might be practically infeasible. This raises the
following ambitious question.

(a) Can we devise some method to reduce the hash key size to a constant factor of
n + t , while avoiding the � factor in the security bound?

3.2.1 Toward a possible remedy

One possible way of solving (a) could be to use a fixed number of previous blocks informa-
tion instead of the entire history of previous blocks. This will certainly replace the � factor
in case of poly-hash. But now we have to use both plaintext and ciphertext pairs, other-
wise the overall design will no longer be secure (the adversary can always keep the required
plaintext blocks fixed). Further a direct security reduction like O[XTX] will not be possible
any more and an independent security analysis is required. In Section 5 we use this design
strategy to give an (almost) affirmative solution for (a) in shape of a new construction that
achieves a security in the order of min(2n/n, 2(n+t)/2) block-queries.

POEx, though an implicit instance of O[XTX], tries to use this strategy to resolve (a). It
fixes the input of the hash function to just the immediate previous input-output of the under-
lying TBC to avoid the � factor while maintaining a key size of n + t bits. Unfortunately,
there is a flaw in their analysis (see Section 4). The actual bound for POEx must have an �

factor.

4 Revisiting POEx

In this section we review the security of POEx, a rate-1 online cipher based on tweakable
block ciphers, which claims Beyond Birthday Security [18].

4.1 Description of POEx

POEx is an extended version of POE, the online cipher used under POET [1]. It constructs
an online cipher by iterated usage of a fixed tweak length TBC and a pAXU hash function
on two block input/output. The algorithmic description of POEx is given in Algorithm 1 and
a schematic illustration of the encryption/decryption process is shown in Fig. 1. On a macro
level the construction looks neat and the security claim looks correct. But in the follow-
ing subsections we describe a birthday bound attack on POEx that invalidates the security
claim.
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The security of POEx is claimed to be 2
n+t
2 block-queries. More specifically we have the

exact security claim in Theorem 3.

Theorem 3 (Theorem 3 in [18])

Advosprp
POEx[Ẽ,H ] ≤ 2Advtsprp

Ẽ± (σ,O(τ)) + 2(σ + 1)2ε ·
(
2 + 2t

2n − (σ + 1)

)

4.1.1 Flaw in POEx security analysis

The security of POEx mainly rely on the pAXU bound (say ε) of the underlying hash
function. For example one of the bad events in the security proof of POEx is (T i

j , Xi
j )

(tweak-input) collision. This case has been bounded to ε · σ 2/2. The argument being: there

can be at most

(
σ

2

)
pairs and for each pair the pAXU bound is ε. But this argument only

holds when all inputs to the hash function are independent of the hash key. In case of POEx
this is not true as the input to the hash function is dependent on the previous hash values
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Fig. 1 Schematic of the encryption/decryption process for the first three blocks of plaintext/ciphertext using
POEx construction
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(linear combination of previous hash value and current message block). For example if we
consider the candidate hash function given in [18], the hash-function inputs are dependent
and the polynomial degree will accumulate through subsequent inputs to poly-hash. So the
security claim is invalid. It seems that POEx requires a stronger assumption, i.e. it needs
pAXU assumption on the iterated hash function. This may not be easy to achieve with
algebraic hash functions.

4.2 Birthday bound attack on POEx

We substantiate the flaw discovered in the previous subsection by constructing an artificial
example of a pAXU hash function that is not secure when used in iterated fashion. For the
sake of simplicity we take t = n. Similar attacks can be constructed for any arbitrary t .
The main idea is to construct an AXU hash, say SciFi, that on any given input converges
to a fixed value when iterated a moderate number of times. By looking at the masking and
tweak generator it can be observed that the adversary can use SciFi to fix the masking to an
unknown but constant value. But the same is not possible for the tweak value as the Yi value
is not in the control of the adversary. Once the masking is fixed, the adversary can expect
tweak collisions in birthday bound.

4.2.1 AXU hash using random mapping over ranked nodes

Let rank : B → [0..n] be a surjective function which is defined as follows:

∀x ∈ B, rank(x) :=
{
0 x = 0,
i 2i−1 ≤ x ≤ 2i − 1.

Let Bi = {x ∈ B : rank(x) = i} and B<i = ∪j<iBj . Clearly B = �i∈[n]Bi . Let

� ←$ Perm(B)

	0 ←$ Func(B0 × B,B0)

∀i ∈ [1..n], 	i ←$ Func(Bi × B,B<i)

We write 	 to denote the random vector (	0, . . . , 	n). We define a keyed hash function
SciFi�,	 : B × B → B as follows:

∀(x, y) ∈ B × B, SciFi�,	(x, y) := �−1 ◦ 	rank(�(x))(�(x), y).

For the sake of simplicity, we drop the subscript �,	 from SciFi�,	. It is easy to
verify that after at most n iterations SciFi returns a fixed value, i.e. for any x and ẏ :=
(y1, . . . , yn) ∈ Bn we have

SciFin(x, ẏ) := SciFi(· · · (SciFi(SciFi(x, y1), y2) · · · , yn) = c,

where c is some unknown but constant value. This can be argued as follows: after each
iteration the rank of the output reduces by at least 1. Since there are finite number of ranks,
n + 1 to be precise, we must be at rank 0 in n iterations. Once we reach rank 0 the output
becomes fixed to �−1(0). We summarize this property in Lemma 1.

Lemma 1 For all m ≥ n, and (x, ẏ) ∈ B × Bm, we have SciFim(x, ẏ) = c, where
c = �−1(0).

In Lemma 2 below, we show that SciFi is an O
(

n
2n

)
-AXU hash function. Thus, security

wise it can be a good candidate for AXU hash.
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Lemma 2 For distinct (x1, y1), (x2, y2) ∈ B × B and δ ∈ B, we have

Pr[SciFi(x1, y1) ⊕ SciFi(x2, y2) = δ] ≤ n + 2

2n
.

In other words, SciFi is an (n + 2)2−n-AXU hash function.

Proof Let R1 and R2 denote rank(�(x1)) and rank(�(x2)), respectively. Let

NZ := [n] × [n] and Z := [0..n] × [0..n] \ NZ.

Now we have,

Pr[SciFi(x1, y1) ⊕ SciFi(x2, y2) = δ]

=
ε1︷ ︸︸ ︷

Pr[SciFi(x1, y1) ⊕ SciFi(x2, y2) = δ, (R1, R2) ∈ NZ]

+
ε2︷ ︸︸ ︷

Pr[SciFi(x1, y1) ⊕ SciFi(x2, y2) = δ, (R1, R2) ∈ Z] (2)

We bound ε1 and ε2 below:

Bound on ε1. For a fixed ψ ∈ Perm(B) if we consider inputs (x1, y1) and (x2, y2)

such that ψ(x1) = 0 and ψ(x2) = 0, then the bound effectively reduces to bounding
the probability that the sum of outputs of two (possibly) independent random functions
on distinct inputs equals to δ. This can be bounded by 2−max(r1,r2) (by conditioning
on the output of the function with smaller range). Using the preceding argument and
conditioning on �, we have

ε1 ≤
∑

(r1,r2)∈NZ
Pr[�−1(	r1(�(x1), y1)) ⊕ �−1(	r2(�(x2), y1)) = δ] · 2

r1+r2−2

22n

≤
∑

(r1,r2)∈NZ

1

2max(r1,r2)−1
· 2

r1+r2−2

22n

≤
∑

(r1,r2)∈NZ

2r1−1

22n
= n

2n
(3)

Bound on ε2. In this case at least one of x1 or x2 is mapped to 0 by �. Further R1 =
R2 = 0 is possible if and only if x1 = x2, in which case we can simply bound the
probability to at most 2−n. So without loss of generality we assume that at least one of
them is non-zero, say R1. Now we can proceed as earlier and we have

ε2 ≤ 1

2n
+

∑

r1∈[n]
Pr[�−1(	r1(�(x1), y1)) = x2 ⊕ δ] · 2

r1−1

22n

≤ 1

2n
+

∑

r1∈[n]

1

2r1−1
· 2

r1−1

22n

≤ 2

2n
(4)

The result follows from (2)–(4).
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4.2.2 Attack description

Lemma 2 shows that SciFi is a good AXU hash function, whereas Lemma 1 shows that the
iterated version SciFi≥n is a pathetic AXU hash. We use this later fact to construct a birthday
bound attack on POEx. Suppose we instantiate the POEx construction using a tuple of AXU
hash functions H := (F ,SciFi) where F ←$ Func(B × B,B) is chosen independently
of SciFi. Further the transition is defined as follows:

H(Xi, Yi) = (F (Xi, Yi),SciFi(Xi, Yi))

Since F is a uniform random function over Func(B × B,B) and hence a 2−n-AXU hash
function, using Proposition 1 we can conclude that H is an n+2

22n
-pAXU hash function. Note

that the choice of universal hash is not rigid. We can take any good candidate of universal
hash provided it is keyed independently of SciFi. Now consider an adversary A that works
as follows:

1. A makes q queries of the form (P i
1‖0�−1), such that for distinct i, i′ ∈ [q] P i

1 = P i′
1

and � > n, and observes the outputs (Ci
1‖ · · · ‖Ci

�−1).

2. If (Ci
j , C

i
j+1) = (Ci′

j ′ , Ci′
j ′+1) for two distinct block indices (i, j) and (i′, j ′), then A

returns 1.

For an ideal online cipher this should require roughly 2n many blocks. But for POEx[Π̃, H ]
this would require roughly 2n/2 many blocks. This can be argued using Lemma 1 which, in
this case, imply that for each query beyond block index n − 1, the input becomes a constant
value. So all that is required is a tweak collision which can be achieved if we have roughly
2n/2 blocks. Hence POEx is only birthday bound secure online cipher.

Remark 1 We would like to remark here that the hash function notion (pAXU) used in
the original POEx design [18] has been modified in a later journal version [19] with due
acknowledgments to our observations. The authors have defined a new and stronger notion
of hash function, called Chained-Partial-AXU Hash Function (an extension of the pAXU
notion for iterated use), and based their security analysis on this notion. Note that the authors
have not given any practical instantiations for such hash function and we speculate that given
the stringent conditions it will be difficult to construct an efficient candidate with close to
2−(n+t) bound. We refer the readers to [19] for a more detailed exposition. In this paper we
follow the original POEx design from [18].

5 XTC: rate-1 (almost) optimally secure online cipher

In the preceding section we showed a subtle flaw in the security claim (and proof) of POEx.
Here we explore the possibility of another approach toward a practical instantiation of
Andreeva et al. [3] TBC to online cipher converter. As discussed in Section 3, O[XTX] can-
not achieve both rate-1 and BBB security simultaneously. A possible remedy is the idea of
using just a fixed number of previous input-output block-pairs information. Based on this
idea, we propose XTC, that achieves min (2n/n, 2

n+t
2 ) block-queries security. The XTC con-

struction is similar to POEx in the sense that it follows POEx’s idea of generating the mask
and tweak using a fixed number of previous blocks information. Both POEx and XTC can
be viewed as possible candidates of TBC to online cipher converter [3], although based on
slightly different strategies. POEx is an O[XTX]-like scheme which uses pAXU property
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on hash function with at most � blocks input, whereas XTC uses pAXU property on hash
function with at most three blocks input.

5.1 An impossibility result

In POEx [18] as well as XTC (see Section 5.2), only a small number of previous blocks
are used for tweak and mask computations. POEx uses the immediate previous TBC input
and output blocks, where as XTC employs the previous two plaintext and ciphertext blocks.
This is done to avoid the loss of � factor in security. In Theorem 4 we show an impossibility
result that would imply that this approach will be futile when the security goal is more than
2n block-queries, which is possible for t > n.

Definition 4 A pair of distinct vectors (a1, . . . , am) and (b1, . . . , bm) is called an m-block
all-but-first collision pair if ai = bi for all i ∈ [2..m].

Theorem 4 Given m ≥ 3, for an ideal online cipher an m-block all-but-first collision pair
can be constructed in O(m2 · 2n) block-queries.

Proof Consider an adversary A that works as follows:

1. Makes roughly 2n/2 distinct encryption queries (P i
1 , x) and stores the result (Ci

1, C
i
2)

in L . At least one collision on the second ciphertext block is expected, say (P i
1 , x) and

(P
j

1 , x) with the corresponding ciphertext (Ci
1, c2) and (C

j

1 , c2).

2. Renames P i
1 , P

j

1 , C
i
1, and C

j

1 as p1, p′
1, c1 and c′

1. Fixes p2 = p′
2 := x and c′

2 = c2.
3. For i ∈ [2..m]

(a) For all a ∈ B makes 2 queries (p1, p2, . . . , a) and (p′
1, p2, . . . , a), and checks if

(c1, c2, . . . , ci) = (c′
1, c2, . . . , c

′
i ). If the equality holds, then fixes pi = p′

i := a

and moves to next i.

4. Sets p := (p1, . . . , pm), c := (c1, . . . , cm), p′ := (p′
1, . . . , p

′
m), and c′ =

(c′
1, . . . , c

′
m).

5. Returns (p, c) and (p′, c′) as the m-blocks all-but-first collision pair.

As the first block is distinct for all queries in step 1 above, there is very high chance of
getting a collision pair. In step 3(a) at the i-th iteration (p1, p2, . . . , pi−1) is distinct from
(p′

1, p2, . . . , pi−1) so the outputs ci and c′
i are uniformly and independently drawn from

B, whence we expect one collision in 2n tries. Hence the total block-query complexity is
bounded by O(m2 · 2n).

Step 1 of Theorem 4 proof gives a simple corollary that lower bounds the number of
previous blocks information required for n bits security.

Corollary 1 To achieve n bits security at least 2 previous plaintext-ciphertext blocks
information is required.

Proof The proof follows from step 1 of the proof of Theorem 4.

Remark 2 Note that, although we have constructed an all-but-first collision pair with start
index as the first index of the queries, similar strategy can be applied if the collision pair
has to be shifted to a later start index.
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Using Theorem 4 and Remark 2 it is clear that to achieve more than 2n block-queries
security one has to process all the previous blocks.

5.2 Description of XTC

For the sake of simplicity we assume tweak size t = n while describing the scheme and its
security. Later we give ways to extend the result for all t . Using Corollary 1 we know that
2 previous plaintext-ciphertext block-pairs can be sufficient for the desired security goal.
The algorithmic description of XTC is given in Algorithm 2, while Fig. 2 gives a pictorial
illustration of the encryption/decryption process. XTC can be viewed as an iteration of XTX,
much like O[XTX], albeit with tweak length fixed to three blocks. We call this equivalent
view O′[XTX]. In Fig. 2, this equivalent view is represented by dashed rectangles which
denote the underlying XTX component.

Although O[XTX] and XTC are similar in their use of XTX for tweak length extension,
yet XTC is much more efficient while maintaining a satisfactory level of security. For a
plaintext-ciphertext pair (P, C) we only use (Si−2 = Pi−2 ⊕ Ci−2, Pi−1, Ci−1) as the
tweak input to the i-th block XTX. While this enables the application of efficient algebraic
hash functions within XTX, the security analysis of the overall scheme becomes a bit more
involved.

5.2.1 Design choices and rationale

We choose the pair (Si−2, Pi−1, Ci−1) as it reduces the state size by one block, and is the
simplest such pair. Further it can be easily verified that we cannot reduce this to 2 blocks
without compromising on security. As far as the choice of hash function is concerned, we
need universal property for the tweak part and XOR universal for the masking part. In other
words we need H to be a pAXU hash over 3 blocks input. Since we are considering only
rate-1 constructions we recommend algebraic hash functions for H .

BRW-based pAXU candidate BRW hash function is an efficient candidate that requires
just one multiplication when the input is restricted to three blocks. It was proposed by
Bernstein [9] based on previous works by Rabin and Winograd [31]. For a 3-blocks input
(a1, a2, a3), BRWx(a1, a2, a3) is defined as:

BRWx(a1, a2, a3) := (a1 ⊕ x) � (a2 ⊕ x2) ⊕ a3,

where � and ⊕ denote field multiplication and addition, respectively, over F2n generated
by some predefined primitive element. It is well-known that BRW hash with three blocks
input is 3 · 2−n-universal [9, 15].

For L ∈ B2, let L1 and L2 be the most and least, respectively, significant n bits of L.
We define the keyed hash function, HL : B × B × B → B × B as follows

∀S, P,C ∈ B, (T , U) := HL(S, P,C) = (BRWL1(C, S, P ),BRWL2(C, S, 0)).

Note that the hash function definition is not arbitrary over the three block inputs. For
example the security reduces to birthday bound if we just swap the values of T and U as
after the swapping, U does not follow AXU. In Lemma 3 we bound the pAXU probability
of H .
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Lemma 3 For distinct (S, P,C), (S′, P ′, C′) ∈ B3, and δ ∈ B we have,

Pr
L

[HL(S, P,C) ⊕ HL(S′, P ′, C′) = (0, δ)] ≤ 9

22n
.

Proof To compute the output (T , U), HL employs two calls to BRW hash with independent
keys L1 and L2, which enables a universal bound of 9 · 2−n. But we need pAXU property,
which in this case means that the second output should have AXU property. Note that the
last input block for the second call of BRW is always zero. This enables us to consider the
difference block as part of the input and reduce the AXU bound to universal bound.

Pr
L

[HL(S, P,C) ⊕ HL(S′, P ′, C′)=(0, δ)] ≤ Pr
L1

[BRWL1(C, S, P )=BRWL1(C
′, S′, P ′)]

·Pr
L2

[BRWL2(C, S, 0)⊕BRWL2(C
′, S′, 0)=δ]

= Pr
L1

[BRWL1(C, S, P )=BRWL1(C
′, S′, P ′)]

·Pr
L2

[BRWL2(C, S, δ)=BRWL2(C
′, S′, 0)]

≤ 9

22n

We emphasize here that the above definition is not the only possibility. Indeed, one can
use polyhash to further reduce the state size at the cost of two more multiplication. In general
any good pAXU hash function can be employed. In this work we mainly focus on saving
on the number of multiplications.

Remark 3 Deriving hash keys via TBC calls. XTC requires two hash keys. However it can
be easily reduced to one by reserving one tweak bit for key generation. For example one can
use (L1, L2) = (Ẽ

1‖0
K (0), Ẽ1‖1

K (1)) as the hash key and fix the most significant bit (MSB)
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Fig. 2 Schematic of the encryption/decryption process for the first three blocks of plaintext/ciphertext using
XTC construction. For each i ≥ 0, Si := Pi ⊕Ci . Dashed rectangles denote the XTX components of XTC and
can be used to view XTC as O′[XTX]

of the tweaks for each TBC in block processing to 0. This will lead to a nominal loss of 1
bit security.

5.3 Security of XTC

We show that XTC[Π̃, H ] construction is secure upto 2n/n block-queries given the hash
function H is O(2−2n)-pAXU hash and Π̃ is a uniform tweakable random permutation.
More generally, we prove the upper bound result on the OSPRP advantage of XTC[Ẽ, H ]
in Theorem 5.

Theorem 5 If XTC is defined as above, H is an ε-pAXU, and σ ≤ 2n−3, then we have

AdvosprpXTC [Ẽ, H ](q, �, σ, τ ) ≤ Advtsprp
Ẽ

(σ, τ ′′) + σ 2ε + 2(n + 2)σ

2n
.

Before proceeding with the proof it would be better to discuss the main crux of the proof
briefly. We employ the iterated TBC view (see Section 3) of an online cipher. The main steps
of the proof are shown in Fig. 3. Basically we reduce the original XTC construction based on
Ẽ and H to a variant of O[Ẽ], that we call O′[˜Π]. O′[˜Π] behaves exactly as O[˜Π], except
that it restricts the i-th block tweak to (Si−2, Pi−1, Ci−1). Finally we bound the distance
between O[˜Π] and O′[˜Π]. Intuitively the two oracles will behave identically until there is
a tweak collision in one of them which is not reciprocated by the other one. Now a tweak
collision in O[˜Π] always implies a tweak collision in O′[˜Π]. But the converse is not true
and we bound the probability of this event to complete the proof.

Proof We will follow the series of steps shown in Fig. 3. Step (1) simply transforms XTC to
O′[XTX]. Steps (2) and (3) are used to replace the underlying XTX[Ẽ,H ] with an ATL TRP,
˜Π. Using Theorem 2, steps (2) and (3) are bounded by Advtsprp

Ẽ
(σ, τ ′′) + εσ 2. In step (4)

we upper bound the distance between O[˜Π] and O′[˜Π] using the game-playing technique
[7, 8].
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O[Π] XTC E,H

O XTX E,HO XTX Π ,HO Π

Advtsprp

E
+ σ 2ε + 2(n+ 2)σ2− n

(1)

Advtsprp

E

(2)

σ 2ε

(3)

2(n+ 2)σ
2n

(4)

Fig. 3 Main steps of the proof are given in (1)–(4). ⇐⇒ with overlying text denotes the distance between
the corresponding schemes and = denotes the equivalence between the corresponding schemes. Sequence
of steps: (1) XTX based view of XTC; (2) and (3) TSPRP security of XTX; (4) Distance between O′[˜Π] and
O[˜Π]

Let A ∈ A(q, �, σ ) be a computationally unbounded deterministic adversary that makes
q distinct queries adaptively to either (1) the real oracleO′[˜Π], or (2) the ideal oracle,O[˜Π].
Refer to games G1 and G2 as shown in Fig. 4. For each tweak input x, sets domain(˜Π

x
)

and range(˜Π
x
) are initialized as empty sets and automatically grow as points are added

to the domain and range of the partial function ˜Π
x
. At any instant, sets domain(˜Π

x
) and

range(˜Π
x
) represent the complements of these sets relative to B. The internal variables

arising in one call to XTC are analogously as given in Algorithm 2 and Figs. 2 and 3.
We now briefly describe the working of the two games. Game G1 and G2 faithfully

simulate O[˜Π] and O′[˜Π], respectively. Consider the encryption/decryption process at the
(i, j)-th block (i-th query and j -th block) for i ∈ [q] and j ∈ [�i]. Without loss of gener-
ality, we assume that i is an encryption query. It is easy to see that both O[˜Π] and O′[˜Π]
have identical output distributions until the bad flag is not set by G2. Obviously the output
distribution is identical when there is no tweak collisions in either of the game. A tweak
collision in G1, i.e., (P i

<j , C
i
<j ) = (P i′

<j , C
i′
<j ), would imply a tweak collision in G2, i.e.,

�i
j := (Si

j−2, P
i
j−1, C

i
j−1) = �i′

j ′ := (Si′
j−2, P

i′
j−1, C

i′
j−1), whence the output distribution

is identical. But a tweak collision in G2 not necessarily mean a tweak collision in G1. This
is captured by the setting of bad flag in game G2. Let BadInput denote the event that
A sets bad, i.e.,
BadInput : ∃(i, j), (i ′, j ′) ∈ I ,

� (P i
<j = P i′

<j ′) ∧ (�i
j = �i′

j ′).

In this case, the output of G1 is uniform and random over B, whereas the output of G2 is

either completely determined (when P i
j = P i′

j ′ ) or uniform and random over range(˜Π
�i

j ) ⊆
B, whence the two output distributions differ. So the fundamental lemma of game-playing
[8] says us that,

Advosprp
O′[˜Π];O[˜Π](A) ≤ Pr[BadInput].

Bound on Pr[BadInput]. In the following discussion we assume that all the queries are
of encryption type. This will not hamper the correctness of our analysis due to the online
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Game G1

On the -th encryption query:

1: for j 1 to Pi do

2: if i < < <i Pi
j Pi

j then

3: if Pi
j Pi

j then

4: Ci
j Ci

j

5: else

6: Ci
j $ Π

Pi< j ,C
i
< j

7: Π
(Pi< j ,C

i
< j ) Pi

j Ci
j

8: end if

9: else

10: Ci
j $

11: Π
(Pi< j ,C

i
< j) Pi

j Ci
j

12: end if

13: end for

14: return Ci : Ci
1, . . . ,C

i
Pi

Game G2

On the -th encryption query:

1: for j 1 to Pi do

2: if i < i j < j Γ i
j Γ i

j then

3: if Pi
j Pi

j then

4: set

5: end if

6: if Pi
j Pi

j then

7: Ci
j Ci

j

8: else

9: Ci
j $ Π

Γ i
j

10: Π
Γ i
j Pi

j Ci
j

11: end if

12: else

13: Ci
j $

14: Π
Γ i
j Pi

j Ci
j

15: end if

16: end for

17: return Ci : Ci
1, . . . ,C

i
Pi

i i

Fig. 4 Game G1 and G2 used in the proof of Theorem 5. G1 corresponds to the iterated view of an online
cipher O[˜Π]. G2 corresponds to O′[˜Π]. In G2, �i

j := (Si
j−2, P

i
j−1, C

i
j−1). We skip the decryption pro-

cedures for both the game as they are similar to the respective encryption procedure and can be described
analogously. Note that the output distribution of the two games are identical until the bad flag is not set

property, rather it will greatly simplify the analysis. The basic idea is to first bound the
number of multicollisions on (Si

j−2, P
i
j−1), and then for each (i, j) bound the probability

of Ci
j−1 collisions over the multicollision set that contains (Si

j−2, P
i
j−1). Note that (P

i
<j =

P i′
<j ′)∧(P i

j−1 = P i′
j ′−1) =⇒ (P i

≤j−2 = P i′
≤j ′−2), otherwise the probability of BadInput

is zero. Let

Ipre :=
{
(i, j) ∈ I : ∀(i′, j ′) < (i, j) we have P i≤j = P i′

≤j ′
}

We define the multicollision relation ∼ on Ipre as follows:

∀(i, j), (i ′, j ′) ∈ Ipre, (i, j) ∼ (i′, j ′) ⇐⇒ (Si
j−1, P

i
j ) = (Si′

j ′−1, P
i′
j ′ ).

Clearly ∼ is an equivalence relation. Let Pα denote the equivalence class containing
α ∈ Ipre and #mc := maxα∈Ipre

∣∣Pα

∣∣. Let MCn denote the event #mc > n. We make the
following claim on #mc.

Claim 1 For σ ≤ 2n−3, we have

Pr[MCn] ≤ 4σ

2n
.
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We are interested in the conditional probability of BadInput given ¬MCn. It is clear that
for each (i, j − 1) ∈ Ipre we have

∣
∣P(i,j−1)

∣
∣ ≤ n, and we have to bound the probability

of Ci
j−1 collisions for at most these many pairs.

Pr[BadInput] ≤ Pr[MCn] + Pr[BadInput | ¬MCn]
≤ Pr[MCn] +

∑

(i,j−1)∈Ipre

∑

(i′,j ′)∈P(i,j−1)

Pr
[
Ci

j−1 = Ci′
j ′

]
(5)

≤ Pr[MCn] +
∑

(i,j−1)∈Ipre

∑

(i′,j ′)∈P(i,j−1)

1

2n − s(i,j−2)
(6)

≤ Pr[MCn] +
∑

(i,j−1)∈Ipre

∑

(i′,j ′)∈P(i,j−1)

1

2n − σ
(7)

≤ Pr[MCn] +
∑

(i′,j ′)∈P(i,j−1)

n

2n − σ
(8)

≤ 4σ

2n
+ 2nσ

2n
(9)

Note that P i
≤j−2 = P i′

≤j ′−1, so the tweaks are distinct, whence the transition from (5) to (6),

where s(i,j−2) denotes the number of (i1, j1) such that P
i1≤j1

= P i
≤j−2. Using s(i,j−2) ≤ σ

we have (6) to (7). Using #mc ≤ n, |Ipre| ≤ σ and Claim 1 we have (7) to (8)–(9).

Proof of Claim 1 Let #mc = m and for some α ∈ Ipre, let |Pα| = m. For each (ia, ja) ∈
Pα , let s(ia,ja) denote the number of (i, j) ∈ I such that P i≤j = P

ia≤ja
. Let us fix one index,

say lexicographically first one, (i1, j1) as our reference index. Then we get a system of
(m−1) equations of the form (S

i1
j1−1 = S

ia
ja−1)a∈[2..m]. We can argue that all these equations

are independent as P
ia
≤ja−1 = P

ib
≤jb−1 where a, b ∈ [m]. So we have

Pr[#mc = m] ≤

(
σ

m

)

(2n − s(i2,j2)) · · · (2n − s(im,jm))
≤

(
σ

m

)

(2n − σ)m−1
.

Summing over all m ≥ n + 1, we have

Pr[MCn] =
∞∑

m=n+1

Pr[#mc = m]

≤
∞∑

m=n+1

(
σ

m

)

(2n − σ)m−1
(10)

≤ 1

2

∞∑

m=n+1

(
4σ

2n

)m

(11)

≤ 4σ

2n
(12)

From (10) to (11) we use the fact that σ < 2n−1, and n(m − 1) > (n − 1)m when m > n.
Using the convergence result on infinite geometric series and assuming σ ≤ 2n−3, we get
the result from (11) to (12).
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As a direct consequence of Theorem 5 and Lemma 3 we get the following corollary for
the BRW-based instantiation of H .

Corollary 2 If H is defined as in Section 5.2.1, and σ ≤ 2n−3, then we have

AdvosprpXTC [Ẽ,H ](q, �, σ, τ ) ≤ Advtsprp
Ẽ

(σ, τ ′′) + 9σ 2

22n
+ 2(n + 2)σ

2n
.

5.4 Extending XTC for arbitrary tweak size

We extend the initial XTC scheme with BRW based hash function for any arbitrary tweak as
follows:

– For t < n, we replace the tweak generating part of H by chopt (BRWL1(C, S, 0) · (P ⊕
L3
1)) where chopt is the standard chop function that extracts the t-MSBs from an n-bits

input. It can be easily shown that BRWL1(C, S, 0) · (P ⊕ L3
1) is a 6 · 2−n-AXU hash.

So using Proposition 1 we can establish that chopt (BRWL1(C, S, 0) · (P ⊕ L3
1)) is a

6 · 2−t -AU hash. Finally this gives a bound of min(2n/n, 2
n+t
2 ) block-queries.

– For t > n, we already know a 2n block-queries attack (using Theorem 4) on XTC.
While we cannot improve over it without incorporating all the previous blocks we can
still get a sub-optimal upper bound of 2n/n block-queries. This is achieved by padding
the n-bits tweak generated by the hash function with zeros to make it t-bits. Clearly
similar bounds as earlier will apply.

Combining the two cases we conclude that XTC is secure while σ � min(2n/n, 2
n+t
2 ).

6 Conclusion

In this paper we first discussed the practical instantiation of TBC based online cipher
of [3] using XTX [27], and its limitations. We then showed a flaw in the security analy-
sis of POEx which invalidates the BBB-security claim. Further we propose a rate-1 and

min(2n/n, 2
(n+t)
2 ) block-queries secure online cipher called XTC. Both POEx and XTC can

be viewed as practical instantiations of the generic converter by Andreeva et al. [3], albeit
following different approaches. Apart from these we also show an impossibility result for
online ciphers based on TBCs.

While we largely solved the problem for constructions with tweak size at most the block
size, a rate-1 construction with more than 2n block-queries security for tweak size more
than the block size is still an open problem. One thing is clear that such constructions must
use all the previous blocks to generate tweak and mask, otherwise the security reduces to
Õ(2n) block-queries (see Section 3).

In this work we solely focus on standalone online ciphers. It might be an interesting
future work to construct a BBB-secure online AE scheme based on XTC.
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