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Abstract

In this thesis, we provide quantitative and/or qualitative improvements in the prov-
able security of several symmetric-key schemes, encompassing major information se-
curity goals, viz. data authentication, encryption, and authenticated encryption.

AUTHENTICATION AND INTEGRITY: Among authentication schemes, we analyze the
CBC-MAC family and counter-based MACs (XMACC, XMACR, PCS, LightMAC etc.),
referred as the XMAC family. First, we revisit the security proofs for CBC-MAC and
EMAC, and identify a critical flaw in the state-of-the-art results. We revise the security
proofs and obtain significantly better bounds in case of EMAC, ECBC and FCBC. Sec-
ond, we study the security of CBC-MAC family, when the underlying primitive is pseu-
dorandom function (PRF), and derive tight security bounds for EMAC, ECBC, FCBC,
XCBC and TMAC. Third, we study the counter-based input encoding used in XMAC
family. We present a generalized view on counter-based encoding and propose some
efficient alternatives to the classical fixed length counter. Further, based on the gen-
eralized view, we identify some necessary and sufficient conditions, which result in
simplified security arguments. As a side-result we also prove second preimage secu-
rity for HAIFA-based hash function (using Davies-Meyer compression function) in the
ideal cipher model.

ENCRYPTION: Among encryption schemes, we study the problem of constructing
beyond-the-birthday bound (BBB) secure online encryption schemes using tweakable
block ciphers (TBCs). First, we construct a birthday bound distinguisher for POEx,
which invalidates the BBB security claims of POEx. Second, we propose a BBB secure
online cipher, called XTC, and prove that it is optimally secure. As a by-product we
suggest a generic distinguisher for a class of TBC-based online ciphers that encom-
passes both POEx and XTC. On a related topic, we study the problem of constructing
BBB secure TBCs from block ciphers. Specifically, we derive a tight security bound for
cascaded LRW2 under the assumption that the underlying hash functions are 3-wise
almost XOR universal.

AUTHENTICATED ENCRYPTION: Finally, among authenticated encryption schemes,
we study a generalization of the OCB family, called GOCB, with an aim to achieve ef-
ficient random read access. We introduce a relaxed notion of universal hash functions,
called locally imperfect XOR universal (LIXU), and prove that GOCB is secure under
this relaxed notion of universality. Further, we instantiate GOCB with AES round func-
tion based LIXU hash functions. These instantiations achieve significantly better ran-
dom read access than OCB3.
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Chapter 1

Introduction

This thesis is an exploration in the field of cryptography. The word cryptography comes

from two greek words, kryptós meaning “secret” and graphein meaning “to write”. In

its most simplest form, it is the study and practice of techniques for concealing mean-

ingful information by camouflaging it with some secret randomness. Since the dawn of

civilization, humans have felt a need for secrecy in communication, be it military, diplo-

matic or otherwise. Indeed, the earliest known encrypted text occurred some 4000 years

ago in the hieroglyphic inscriptions of ancient Egyptian civilization. In recent past, the

two world wars followed by the subsequent cold war, and the Internet revolution have

acted as catalysts in the rapid development of this field. In [113], Kahn gives an exten-

sive account on the history and development of cryptography.

In circa 1948–49, Claude Shannon wrote two landmark papers. The first paper [179]

laid the foundations of information theory, while the second paper, titled Communica-

tion Theory of Secrecy Systems [180], is the first concrete mathematical treatment of the

field of cryptography. Up until mid-1970s, cryptography was quite one dimensional,

concerned with just confidentiality or privacy in communication. In 1976, a seminal

paper titled New Directions in Cryptography [60] by Diffie and Hellman identified the

requirement of integrity, authenticity and non-repudiation in communication. Mod-

ern cryptography has incorporated all these elements along with the traditional need

for confidentiality. Apart from identifying new security goals, Diffie and Hellman also

invented a new paradigm in cryptography, the so-called public-key cryptography [60].

Modern cryptographic schemes are classified into two major classes: symmetric-key (or

secret-key) and asymmetric-key (or public-key). In a symmetric-key scheme, a common

(secret) key is shared between the two (or more) parties for secure communication. In

an asymmetric-key scheme, each party holds a different (set of) key(s), but the keys

are related in some precise mathematical sense. In general, symmetric-key schemes are

1



Chapter 1. Introduction 2

computationally much faster than asymmetric-key schemes, but they have an obvious

prerequisite – both parties should possess a common secret key. This is not easy in a purely

symmetric-key setting, because it requires face-to-face interaction or a trusted courier

or a secure channel. In contrast, this is much easier in asymmetric-key setting, where

a secure key exchange protocol can establish a common secret key. In fact, most of

the modern communication protocols employ a hybrid of asymmetric and symmetric

schemes, where the computationally intensive asymmetric-key scheme is used to fulfill

the initial prerequisites, and the actual communication takes place using symmetric-

key schemes.

In this thesis, we focus on purely symmetric-key setting, i.e., we assume that the key

distribution prerequisite is satisfied.

1.1 Symmetric-key Security Goals and Primitives

Symmetric-key cryptography forms the back bone of contemporary information secu-

rity needs. These schemes are employed in defense communications, banking opera-

tions, and, probably the most important of them all, network protocols such as SSH

[93], TLS [129], WPA2 [181] etc. Any symmetric-key scheme is expected to guarantee

either confidentiality or authenticity (and integrity), or both. We briefly discuss these

goals, and the symmetric-key primitives that achieve these goals. Let us fix two parties

Alice and Bob communicating over an insecure channel using a common secret key K.

1.1.1 Data Authenticity

Data authenticity demands that when Alice sends some information to Bob, then Bob

should be able to verify that Alice was the sender. In symmetric-key settings, a related

but different goal of data integrity is subsumed within data authenticity.

Message authentication codes or MACs are symmetric-key primitives, which ensure data

integrity and authenticity. Informally, a MAC scheme M is a tuple of two algorithms,

the tag-generation algorithm M+ and the tag-verification algorithm M−. The working

principle of a basic MAC scheme M instantiated with secret key K is quite simple.

Whenever Alice wants to send a message M to Bob, she sends (M,T ), where the tag T

is the output of tag-generation algorithm, i.e., T = M+(K,M). When Bob receives a

message-tag pair (M ′, T ′), he runs M−(K,M ′, T ′), which internally checks the equality

T ′ =? M+(K,M ′). See section 2.4 of chapter 2 for a formal definition of MAC.
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There are several ways to construct MAC schemes. In this thesis, we will mainly study

MAC schemes based on block ciphers. CBC-MAC family [15, 21, 34, 65, 97, 121, 189] and

PMAC family [35, 171, 190, 191] are two most popular families of MACs. The CBC-MAC

family is sequential whereas PMAC is parallelizable, though it requires more memory.

Both CBC-MAC and PMAC are length dependent, i.e., their security reduces as the

message length increases [19, 74]. Counter-based MACs, such as XMACC and XMACR

[16], PCS [23], LightMAC [126], and LightMAC+[143], avoid such security degradation

by using counter-based encodings.

1.1.2 Data Confidentiality or Privacy

Data confidentiality demands that when Alice sends some information to Bob, then

Bob and only Bob should be able to read that information, and others should not get

any knowledge about the information.

In symmetric-key setting, encryption schemes such as CTR and OFB [153] strive for confi-

dentiality of data. An encryption scheme E is a tuple of two algorithms, the encryption

algorithm E+, and the decryption algorithm E−. The working principle of a basic en-

cryption scheme E instantiated with secret key K is as follows. Whenever Alice wants

to send a message M to Bob, she sends C, where the ciphertext C is the output of en-

cryption algorithm, i.e., C = E+(K,M). When Bob receives the ciphertext C, he runs

E−(K,C), to get back the decrypted text M . Obviously, E+ should be a bijective func-

tion and E− should be its inverse, otherwise Bob cannot decrypt with certainty. Further,

if E is secure, then no one else can decrypt the ciphertext without the knowledge of key

K. Some popular examples of encryption schemes include, CTR [153], CBC encryption

[153], OCB encryption [119, 171, 174], CMC [88], EME [89], HCTR [184], and HEH [176].

1.1.2.1 Online Encryption Schemes

In low-memory devices and continuous data streaming platforms with high through-

put demands, it is often desirable to produce encrypted data in online fashion, i.e., the

encryption of the current data block should only depend on the previous data blocks

and the current data block. For instance, [71, 72] noticed that several network APIs are,

in practice, stream-oriented, for example OpenSSL EVP DecryptUpdate interface.

In such scenarios, the online property is desirable. Paraphrasing the informal defini-

tion by Rogaway and Zhang [173], an encryption scheme is said to satisfy the online

property if (1) it can be realized by an algorithm that, for any input, read its input blocks

one at a time in order and computes the corresponding output blocks one at a time in
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order, and (2) it uses only a constant-bound amount of memory and/or latency. The

introductory definition by Bellare et al. [18] satisfied (1), which was later strengthened

by Boldyreva and Taesombut [39] to satisfy (2). See section 2.5 of chapter 2 for a formal

definition of online encryption schemes.

Apart from their practical importance, online ciphers are also used to construct other

symmetric-key primitives, most prominently they are used in authenticated encryption

schemes to dilute the effect of nonce misuses [1, 3, 40, 56]. Recently, Andreeva et al.

[7] used online ciphers to build deterministic encryption schemes. In the same paper

they also showed that online ciphers are equivalent to tweakable block ciphers (block

ciphers with an extra public input called tweak) with variable length tweaks.

Some popular online encryption modes include, HCBC1 and HCBC2 [18], HPCBC [39],

MHCBC and MCBC [146], TC1, TC2 and TC3 [173], OleF [29], and POEx [71, 72]. In this

thesis we will study online encryption schemes and their relationship with tweakable

block ciphers.

1.1.3 Data Authenticity and Confidentiality

Suppose now that Alice wants to send some confidential information to Bob, and Bob

wants to verify that Alice was the sender. This requires both authenticity and confiden-

tiality.

Authenticated encryption (AE) or authenticated cipher schemes are symmetric-key prim-

itives which achieve both confidentiality and authenticity. An authenticated encryption

scheme A is a tuple of two algorithms, the encryption algorithm A+ and the decryp-

tion algorithm A−. The working principle of any AE scheme A instantiated with secret

key K is similar to a MAC scheme. Whenever Alice wants to send a message M to

Bob, she sends (C, T ), where the ciphertext-tag pair (C, T ) is the output of encryption

algorithm, i.e., (C, T ) = A+(K,M). When Bob receives a ciphertext-tag pair (C ′, T ′),

he runs A−(K,C ′, T ′), which (in most cases) internally decrypts the ciphertext to some

plaintext M ′ and then checks the equality A+(K,M ′) =? (C ′, T ′). See chapter 2 section

2.6 for formal definition of AE.

Usually, AE schemes also take an auxiliary input called the associated data (AD) or

header that may contain some information about the sender. In these cases, the mod-

ified AE scheme is called AE with associated data functionality or AEAD. A secure

AEAD scheme should ensure authenticity of both AD and message, and privacy of

only message (as AD is usually some publicly known information). OCB family [119,

171, 174], GCM [130], CCM [154], COLM [5] etc. are some popular AEAD schemes.
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1.2 Provable Security in Symmetric-key Settings

In [13], Bellare notes that the idea of provable security was introduced by Goldwasser

and Micali [79] in context of asymmetric encryption, but it soon spread to other tasks,

particularly pseudorandomness [37, 76].

The most fundamental step in proving the security of any scheme is to establish the se-

curity goal (privacy or authenticity or both) and a formal adversarial model—a security

game that defines the meaning of security with regard to the security goal. Given the

goal and the model, a (symmetric-key) cryptographic scheme is deemed to be provably

secure, if one can formally argue that it is secure given the hardness of some underlying

computational problem. For example AES-PMAC [35] is a secure MAC (see chapter 2)

if AES [152] is a secure pseudorandom permutation or PRP1 (see chapter 2). Here MAC

gives a precise definition of the security goal (unforgeability of tag values) and adver-

sarial model (access to tag-generation and tag-verification algorithms as black boxes),

and PRP assumption on AES is the hardness assumption.

1.2.1 Information-Theoretic Security

In general, a symmetric-key scheme is made up of two components:

• A concrete primitive, such as the block cipher AES [152], that operates on short and

fixed length inputs; and

• A suitable mode of operation, such as GCM [130], that is used to extend the domain

of applicability from short and fixed lengths to long and variable lengths.

For example, AES-GCM is a symmetric-key scheme that combines the AES block ci-

pher (the concrete primitive) and GCM authenticated encryption mode (the mode of

operation) to achieve both authenticity and confidentiality.

The usual method for proving the computational2 security of a symmetric-key scheme

involves two steps:

1. Replacing the underlying concrete primitive with a suitable ideal object. For ex-

ample, AES is replaced with a uniform random permutation Π; This step uses the

computational indistinguishability3 of the underlying primitive with respect to

1Computationally indistinguishable from a uniform random permutation.
2Any algorithm must halt in polynomial (of input length) time.
3For example, a PRP is computationally indistinguishable from a uniform random permutation.
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the ideal object. This is, in general, heuristic, and mostly depends upon the con-

fidence on a particular primitive. For example, AES is considered to be a good

PRP, as it is well-analyzed over a longer period of time.

2. Proving the security of the mode of operation using this ideal primitive. For

example, Π-GCM (GCM instantiated with Π) is shown to be a secure AE. This

second step, in most of the cases, proves information-theoretic (the adversary

is allowed unbounded computational time) indistinguishability of the mode of

operation. In other cases, the original security game can be reduced to some

variant indistinguishability game.

In this thesis, we will be mainly concerned with the second step. The security is, in

general, parameterized in terms of adversarial resources. For example, throughout this

thesis we use q, `, σ, and t to denote the number of queries, length of the longest query,

the total length of all queries, and the computational time, respectively.

1.2.2 Directions in Provable Security

A provable security result has two main components: i) the underlying hardness assump-

tion/security precondition; (ii) the security bound under this assumption. We use the follow-

ing terminologies to refer to these facets:

• Qualitative: what is the underlying security precondition? This could be some

number-theoretic problem like “factoring problem”, or the pseudorandomness

of some family of function like “AES is PRP”, or the universal property of some

hash function, etc.

• Quantitative: how much security (data and time complexity)? The quantitative

value of some security bound depends on the relationship between the security

parameters (i.e. q, `, σ) and the input/output size of the primitive, for example

the block size n and key size κ of the block cipher. This is represented by the

notion of advantage of an adversary against the scheme (see chapter 2).

Naturally, any result on the provable security of some scheme means improvement

in either its qualitative aspect, i.e. a relaxation in the security notions of underlying

primitives, or its quantitative aspect, i.e. an improved security bound, or both. Con-

sequently, all the results in this thesis improve over the existing results in quantitative

and/or qualitative aspects.
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1.3 Thesis Outline and Our Contributions

In this thesis, we aim to provide qualitative and/or quantitative improvements in the

security of several symmetric-key schemes encompassing authentication, encryption

and authenticated encryption. We start off with establishing the relevant notations and

conventions in chapter 2. In the same chapter we also give a formal description of

symmetric-key primitives and their security. Our contributions are given in chapter 3

onwards. Broadly our contributions can be grouped into three parts: a) analysis of mes-

sage authentication codes (in chapters 3-5); b) analysis of online and tweakable ciphers

(in chapters 6 and 7); and c) analysis of authenticated ciphers (in chapter 8). In each

of the subsections 1.3.1-1.3.3, we first give a detailed summary of related works, fol-

lowed by our contributions. Finally, subsection 1.3.4 lists down all the research papers

on which this thesis is based.

1.3.1 Analysis of Message Authentication Codes

We analyze two family of MAC schemes, namely, the CBC-MAC family comprising of

CBC-MAC [65], EMAC [15, 21], ECBC, FCBC and XCBC [34], TMAC [121] and OMAC

[97], and the XMAC family comprising of XMACC and XMACR [16], PCS [23], and

LightMAC [126].

The security of MAC constructions has seen constant research interest. Among block

cipher based constructions, CBC-MAC [15], PMAC [35] and their variants [34, 97, 126]

are the most popular.

ANALYSIS OF CBC-MAC: The first concrete result on CBC-MAC was given by Bellare

et al. [15]. They showed a bound of 2q2`2/2n for fixed length queries, which was further

improved to q2`2/2n by Maurer [128]. Later, Bernstein [27] simplified the proof for

fixed-length CBC-MAC. Petrank and Rackoff [162] extended the proof in [15] to prefix-

free4 queries and a similar extension on Bernstein’s proof was done by Rackoff and

Gorbunov [80]. Both bounds are about O(q2`2/2n). The most recent bound on CBC-

MAC is due to Bellare et al. [19] who improved (in terms of `) the bound to 12q2`/2n +

64q2`4/22n. Another way of improvement is to show a bound of the formO(σq/2n) (see

[149] for more details).

ANALYSIS OF EMAC: In [15], Bellare et al. also suggested some variants of CBC-

MAC to handle variable length messages. In particular, they mentioned a construction,

where the output of CBC-MAC is further encrypted by an independently keyed block

4None of the message is a prefix of another message.
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cipher. This construction known as EMAC was first developed during the RACE project

[21]. Petrank and Rackoff [162] proved that DMAC (same as EMAC) has security bound

2.5q2`2/2n. Bellare et al. [19] improved the bound to O(q2d′(`)/2n), where d′(`) = `o(1)

denotes the maximum number-of-divisors function. The latest bound on EMAC is due

to Pietrzak [163] that claims O(q2/2n) bound for ` < 2n/8.

ANALYSIS OF OTHER MEMBERS OF THE CBC-MAC FAMILY: Both CBC-MAC and EMAC

require input lengths in multiple of the underlying block size n. Black and Rogaway

[34] introduced three refinements to EMAC, viz., ECBC, FCBC and XCBC to allow

use of variable block length strings. They showed that ECBC and FCBC have secu-

rity bound 2.5σ2/2n and the bound on XCBC is 3.75σ2/2n. Jaulmes et al. [102] gave a

randomized version of EMAC which they called RMAC and proved that the construc-

tion resists birthday attacks. However the proof seems to be incorrect (as suggested

in [19]). Other excellent variants of CBC-MAC are TMAC [121], OMAC [97] and GCBC

[147]. A variant of OMAC, namely OMAC1 is equivalent to CMAC which became an

NIST recommendation [155] in 2005. Another design approach is PMAC [35] by Black

and Rogaway that processes the input message in parallel. In [35], Black and Rog-

away proved O(σ2/2n) bound for PMAC. In [98, 140, 148, 151] the improved bounds

for XCBC, TMAC, PMAC and OMAC are shown in the form ofO(q2`/2n), O(σ2/2n) and

O(σq/2n). Apart from these specific constructions, Jutla [112] suggested a general class

of DAG-based constructions.

ANALYSIS OF PRF-BASED CBC-MAC FAMILY: There has been little study about the

security of CBC-MAC family instantiated by pseudorandom functions or PRFs5 (see

chapter 2). In fact, we came across only three prior works. First work is a study of iter-

ated MAC constructions by Preneel and van Oorschot [167], which gives tight bounds

for compressing PRFs. But, the result is not applicable to CBC-MAC family which re-

quires just length-preserving primitives. Second one is the diploma thesis of Berke [22],

where he showed that CBC-MAC restricted to prefix-free messages can be attacked with

advantage Ω(q2`2/2n). This is in fact a non trivial result which shows the gap between

PRP vs PRF instantiation, because for PRP instantiation of CBC-MAC the advantage is

bounded by O(q2`/2n), whereas for PRF instantiation of CBC-MAC the attack shows

that the PRF bound in [15] is tight. The third work is Guo et al’s [86] collision dis-

tinguisher for iterated random function with advantage Ω(q2`/2n). As it turns out,

this attack can be easily translated to attack against PRF-based EMAC, ECBC, FCBC,

XCBC and TMAC. However, the bound holds when q2`2 ≤ 2n. Subject to this condition,

Ω(q2`/2n) can be some constant only when q = Ω(2n/2). This lower bound on q is actu-

ally no better than the trivial birthday attack with advantage Ω(q2/2n). All of the above

mentioned works concentrated on the lower bounds on the PRF advantage. In context
5Computationally indistinguishable from a uniform random function.
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of upper bounds, we note that any PRP-based security bound can be transformed to

PRF-based security bound with a loss of O(σ2/2n) security using the PRP-PRF switch-

ing lemma [14, 47, 183]. However this generic transformation is known to be rather

loose, and may not necessarily capture the exact security of PRF-based instantiations.

ANALYSIS OF XMAC FAMILY: All the above schemes have length dependent security

bounds, i.e., the security decreases as the length increases. In [16], Bellare et al. pro-

posed two counter-based MACs called XMACC and XMACR. Bellare et al. showed

that XMACC and XMACR achieve length independent security bounds of O(q/2n) and

O(q2/2n) for large range of message length (up to two power the counter size). Bern-

stein utilized a similar counter-based encoding to obtain O(q2/2n) bound for protected

counter sum or PCS [23] assuming that the underlying primitive is PRF. Luykx et al.

[126] gave the block cipher version of PCS, called LightMAC, and showed the security

bound of O(q2/2n). We call the group of all these counter-based schemes, the XMAC

family. Although, the XMAC family achieves `-free security bound, it loses on effi-

ciency, since the encoded message is generally much longer than the original message.

This is due to the encoding of the counter bits. In general, reducing the counter size as

much as possible is desirable for efficiency, but it is not known how one can reduce the

counter size, and whether the modified encoding will be secure or not.

1.3.1.1 Improved Security of CBC-MAC Family

In chapter 3, we identify and fix a critical flaw in the state-of-the-art results [19, 163]

on the PRF security of CBC-MAC and EMAC. This results in a small change in the

existing security bound for CBC-MAC, whereas the existing security bounds for EMAC

degrades significantly. Consequently, we provide tight security bound for EMAC while

` < 2n/4. In concrete terms, for CBC-MAC we prove O(σq/2n) security while ` < 2n/3,

and for EMAC we prove O(q2/2n) security while ` < 2n/4. Our bound for EMAC also

implies tight security for ECBC and FCBC while ` < 2n/4. Table 1.3.1 summarizes the

state-of-the-art results and our improvements on CBC-MAC family.

PUBLICATION HISTORY: Chapter 3 is based on our paper [104], accepted in Journal of

Mathematical Cryptology.

1.3.1.2 Exact Security of PRF-based CBC-MAC Family

In chapter 4, we study the security of CBC-MAC family when the underlying primitive

is a length-preserving PRF. We obtain a tight security bound for EMAC, ECBC, FCBC,

XCBC, and TMAC. Further, our lower bound attack also applies to OMAC. In concrete
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Table 1.3.1: Summary of security (PRF advantage) bounds for the CBC-MAC family.
Here q, `, and σ denote the number of queries, maximum permissible message length,

and sum of message lengths of all q queries, respectively.

Scheme
State-of-the-art Chapter 3

Bound Restriction Bound Restriction

CBC-MAC [65] O
(
q2`/2n

)
[19]1 ` = o

(
2n/3

)
O (σq/2n) ` = o

(
2n/3

)

EMAC [15, 21]
O
(
q2/2n

)
[163]1 ` = o

(
2n/8

)
O
(
q2/2n

)
` = o

(
2n/4

)
O
(
q2d′(`)/2n

)
[19]1 ` = o

(
2n/3

)
ECBC [34] O

(
q2d′(`)/2n

)
[19]1 ` = o

(
2n/3

)
O
(
q2/2n

)
` = o

(
2n/4

)
FCBC [34] O

(
q2d′(`)/2n

)
[19]1,2 ` = o

(
2n/3

)
O
(
q2/2n

)
` = o

(
2n/4

)

XCBC [34]
O
(
q2`/2n

)
[140]3 ` = o

(
2n/3

)
- -

O
(
σ2/2n

)
[98]3 -

TMAC [121]
O
(
q2`/2n

)
[140]3 ` = o

(
2n/3

)
- -

O
(
σ2/2n

)
[98]3 -

OMAC [97] O (σq/2n) [148] ` = o
(
2n/3

)
- -

1 Proof is flawed. See Chapter 3 for details.
2 Although, FCBC is not mentioned in [19], the EMAC bound is applicable to FCBC as well.
3 σ2 and q2` are incomparable, as the exact relation depends on the query length distribution.

terms, for EMAC, ECBC, FCBC, XCBC, and TMAC we prove O(σq/2n) security while

` < 2n/3, and for EMAC, ECBC, FCBC, XCBC, TMAC, and OMAC we present an ad-

versary that breaks the security with Ω(q2`/2n) advantage. Table 1.3.2 summarizes the

state-of-the-art and our results on PRF-based CBC-MAC family.

PUBLICATION HISTORY: Chapter 4 is based on our paper [109], accepted in IACR

Transactions on Symmetric Cryptology.

1.3.1.3 Formalizing Counter-based Encoding

In chapter 5, we study the counter-based encoding used in the XMAC family (XMACC,

XMACR [16], PCS [23], LightMAC [126]). We present a unified notion for counters,

called the counter function family. Based on this generalization we identify some neces-

sary and sufficient conditions on counters which give (possibly) simple proof of secu-

rity for various counter-based cryptographic schemes, including the XMAC family. We

observe that these conditions are trivially true for the classical counters. We also iden-

tify and study two variants of the classical counter which satisfy the security conditions.
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Table 1.3.2: Summary of security (PRF advantage) bounds for PRF-based CBC-MAC
family. Here q, `, and σ denote the number of queries, maximum permissible message

length, and sum of message lengths of all q queries, respectively.

Scheme
State-of-the-art Chapter 4

Upper Bound Lower Bound Upper Bound Lower Bound

CBC-MAC O
(
q2`2/2n

)
[15] Ω

(
q2`2/2n

)
[22] - -

EMAC O
(
σ2/2n

)
1 Ω

(
q2`/2n

)
[86]2 O (σq/2n) Ω

(
q2`/2n

)
3

ECBC O
(
σ2/2n

)
1 Ω

(
q2`/2n

)
[86]2 O (σq/2n) Ω

(
q2`/2n

)
3

FCBC O
(
σ2/2n

)
1 Ω

(
q2`/2n

)
[86]2 O (σq/2n) Ω

(
q2`/2n

)
3

XCBC O
(
σ2/2n

)
1 Ω

(
q2`/2n

)
[86]2 O (σq/2n) Ω

(
q2`/2n

)
3

TMAC O
(
σ2/2n

)
1 Ω

(
q2`/2n

)
[86]2 O (σq/2n) Ω

(
q2`/2n

)
3

OMAC O
(
σ2/2n

)
1 - - Ω

(
q2`/2n

)
3

1 Using PRP to PRF switching.
2 The bound achieves constant probability for q = Ω

(
2n/2

)
, and hence no better than folklore attack.

3 The bound holds while ` < 2n/3 for sufficiently large n. In fact, we can choose any q, ` ∈ Θ(2n/3).

The first variant has message length dependent counter size, whereas the second vari-

ant, based on prefix codes, has message length independent counter size. Furthermore,

these variants provide better performance for shorter messages. For instance, when the

message size is 219 bits, AES-LightMAC with 64-bit (classical) counter takes 1.51 cycles

per byte (CPB), whereas it takes 0.81 CPB and 0.89 CPB for the first and second vari-

ant, respectively. We benchmark the software performance of these variants against the

classical counter by implementing them in MACs and hash function.

PUBLICATION HISTORY: Chapter 5 is based on our paper [63], accepted in IEEE Trans-

actions on Computers.

1.3.2 Analysis of Online and Tweakable Ciphers

We study a generic method of constructing beyond-the-birthday bound (BBB) secure

online encryption schemes using tweakable block ciphers, and methods of constructing

a tweakable block cipher using block ciphers.

BBB SECURE ONLINE CIPHERS: In [131], Mennink showed that it is (almost) impos-

sible to get BBB secure tweakable block ciphers using block ciphers. A recent work of

Andreeva et al. [7] shows that online ciphers are equivalent to arbitrary tweak length
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(ATL) tweakable block ciphers (TBCs). By combining these two results one can easily

see that building a BBB secure online cipher using block ciphers is also difficult. On

the other hand, the proof in [7] is constructive, i.e., it might be possible to get highly

secure online ciphers using ATL TBCs (such as XTX [139]). POEx by Forler et al. [71]

is loosely based on this approach, and has been shown to have O(σ2/2n+τ ) security

bound, where τ is the tweak size.

SECURITY OF BLOCK CIPHER-BASED TBCS: In light of [131], it would be interesting

to analyze the security of existing TBCs based on block ciphers. Cascaded LRW2 or

CLRW2, by Landecker et al. [123], is a popular block cipher to TBC converter. Lan-

decker et al. [123], showed that CLRW2 has roughly q3/22n security. Recently, Men-

nink showed an attack on CLRW2 with advantage q4/23n. In the same paper, he also

showed that CLRW2 based on 4-wise independent AXU (see chapter 2) has γq/2n se-

curity, where γ denotes the maximum number of queries with same tweak. However,

Mennink’s proof depends on the validity of a restricted version of the generalized Mir-

ror Theory [160, 161], which has several unverified gaps [54, 58].

1.3.2.1 Online Ciphers using Tweakable Block Ciphers

In chapter 6, we study the consequences of instantiating the ATL TBC to online cipher

converter of [7] with XTX by Minematsu and Iwata [139]. We first observe that XTX-

based instantiations has security in the order of σ2ε, where ε is the pAXU bound (see

chapter 2) of the underlying hash function. We show that there are genuine practi-

cal issues which render it almost impossible to get full security using this approach.

We then observe that POEx by Forler et al. [71, 72] is actually an implicit example

of this approach. We show a flaw in the analysis of POEx which results in a birth-

day bound attack and invalidates the BBB security claim. We take a slightly different

approach then the one just mentioned and propose XTC which achieves security of

O(max{nσ/2n, σ2/2(n+τ)}) where τ is the tweak size. While doing so we present an

impossibility result for τ > n which can be of independent interest.

PUBLICATION HISTORY: Chapter 6 is based on our paper [105], accepted in Cryptogra-

phy and Communications.

1.3.2.2 Cascaded LRW2

In chapter 7, we revisit the recent result on Cascaded LRW2 or CLRW2 by Mennink

[132]. In that paper, Mennink discussed some non-trivial bottlenecks in proving tight

security bound, i.e. security up to 23n/4 queries. Subsequently, he proved security up
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to 23n/4 queries for a variant of CLRW2 using 4-wise independent AXU assumption

and the restriction that each tweak value occurs at most 2n/4 times. Moreover, his proof

relies on a version of mirror theory which is yet to be publicly verified. We resolve the

bottlenecks in Mennink’s approach and prove that CLRW2 is a secure tweakable block

cipher up to roughly 23n/4 queries, with only one assumption that the underlying hash

function family is 3-wise independent AXU. To do so, we develop two new tools: first,

we give a probabilistic result that provides improved bound on the joint probability of

some special collision events; second, we present a variant of Patarin’s mirror theory

in tweakable permutation settings with a self-contained and concrete proof. Both these

results are of generic nature, and can be of independent interests.

PUBLICATION HISTORY: An abridged version of chapter 7 was under review in Journal

of Cryptology at the time of submission of this thesis. Subsequently, the results of this

work have been improved significantly from what has been described in chapter 7.

Particularly, we have been able to drop the 3-wise independent AXU assumption and

show tight security for the original CLRW2. This improved and updated result has

been accepted in Journal of Cryptology [107].

1.3.3 Analysis of Authenticated Encryptions

We explore the scope of random read access and out-of-order decryption in OCB [119,

171, 174].

RANDOM READ ACCESS AND OUT-OF-ORDER DECRYPTION: A block cipher based en-

cryption mode of operation is said to have random read access feature, if it allows efficient decryp-

tion of any arbitrary encrypted block of message. This property could be beneficial in secure

storage of read only data on cloud servers. The encrypted storage helps in avoiding

unauthorized access, and the authentication tag helps in maintaining the integrity of

the stored data. For example, say some enterprise application stores day to day system

log files on some cloud server. Here the day timestamp may act as the nonce value.

Now suppose on a later day the application faces some issue which warrants some

portion of a particular day’s log file. In this case the system administrator should be

able to repeatedly read arbitrary blocks from the decrypted log, with as little overhead

as possible, by simply mentioning the relevant day timestamp and the offset in the log

file.

Yet another use-case for random read access is in disk encryption where access to an ar-

bitrary block of some disk sector is highly beneficial. A popular and standardized disk

encryption scheme, called XTS by Rogaway [171], is quite similar to OCB encryption.



Chapter 1. Introduction 14

A related feature is out-of-sequence decryption where the mode of operation allows for the

decryption of the encrypted block data stream in an arbitrary order. In other words, the

original ordering of the ciphertext blocks is not necessary for the decryption phase.

This is quite useful in secure data transmission over connection-less network protocols

such as User Datagram Protocol (UDP) [165], which allows for out-of-order delivery

of data packets. If the underlying encryption scheme offers efficient out-of-sequence

decryption then the data packets can be decrypted in on-the-fly manner; otherwise

the received packets have to be reordered first which adds to the network protocol

overhead. Yet another application area is real time data streaming protocols such as

Secure Real-time Transport Protocol (SRTP) [10, 111, 124] and SRTP Control Protocol

(SRTCP) [178], where on-the-fly decryption of received data packets is necessary to

maintain the continuity of audio or visual data. In general, a scheme with random read

access feature also allows out-of-sequence decryption.

1.3.3.1 Random Read Access in OCB

In chapter 8, we first observe that the current versions of OCB are inefficient in random

read access owing to the ineptness of the underlying mask (or offsets) generating func-

tion (MGF). We propose new candidates for MGF based on AES round function, which

are efficient in direct computation and provide comparable performance in the usual

setting. Our schemes are not the obvious choices for MGF in conventional sense as they

do not have optimal almost XOR universal (AXU) bound. In existing OCB designs the

MGFs are required to have 2−n, i.e. optimal, AXU bound in order to upper bound the

distinguishing advantage to O(σ2/2n). We find this specific requirement too restric-

tive. We abstract the OCB design, termed as GOCB, to look into the universal notion

required from the underlying MGF. We propose a relaxed notion of AXU, called locally

imperfect XOR universal (LIXU) hash, which can be of independent interest. Using

LIXU as the underlying MGF we recover reasonable security bounds for our schemes.

PUBLICATION HISTORY: Chapter 8 is based on our paper [110], accepted in IEEE Trans-

actions on Information Theory.

1.3.4 List of Research Papers

This thesis is based on following research papers:

1. Ashwin Jha and Mridul Nandi: Revisiting Structure Graphs: Applications to CBC-

MAC and EMAC. In J. Mathematical Cryptology, 10(3–4):157–180, 2016.
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principle i.e., it is determined by the alphabetical ordering of the last names of the au-

thors.



Chapter 2

Preliminaries

2.1 Notational Setup

We write the set of all positive integers as N and N0 := N ∪ {0}. For n ≥ r ∈ N0, we

define the falling factorial (n)r := n!/(n− r)! = n(n− 1) · · · (n− r+ 1). For a < b ∈ N0,

[a . . . b] denotes the set {a, a + 1, . . . , b}. For a = 0 and a = 1, we simply write it as

(b] and [b], respectively. We sometimes use the short hand notation ∃∗ to represent the

phrase “there exists distinct”. For any finite set X , X←$X represents the uniform at

random sampling of X from X .

STRINGS AND TUPLES: For n ∈ N, {0, 1}n denotes the set of all n-bit strings, and

{0, 1}+ := ∪∞i=1{0, 1}i. We write ε to denote the empty string and {0, 1}∗ := {0, 1}+ ∪
{ε}. For x ∈ {0, 1}∗, |x| denotes the bit-length (or simply length) of x, and |ε| = 0 by

convention. For x, y ∈ {0, 1}∗, z = x‖y denotes the concatenation of x and y with

|z| = |x| + |y|. Thus, by definition x‖ε = ε‖x = x. For z = x‖y ∈ {0, 1}∗, x and y are

called the prefix and suffix, respectively, of z. For any r, s ∈ N, 〈s〉r denotes the r-bit

unsigned representation of integer s. For any x ∈ {0, 1}∗ and r < |x|, msbr(x) and

lsbr(x) denote the substrings x1‖ · · · ‖xr and x|x|−r+1‖ · · · ‖x|x|, respectively.

For a finite set X ⊂ {0, 1}∗ and q ∈ N, xq ∈ X q denotes the q-tuple (or sequence)

(xi)i∈[q] := (x1, x2, . . . , xq), where xi ∈ X for all i ∈ [q]. By an abuse of notation, we also

use xq to denote the multiset {xi : i ∈ [q]} and write µ(xq, x′) to denote the multiplicity

of x′ ∈ xq. We sometimes write x̂q to denote the set {xi : i ∈ [q]}. We write (X )q ⊂ X q

as the set of all q-tuples with distinct elements from X , i.e., for xq ∈ (X )q, xq = x̂q and

|(X )q| = (|X |)q. For any tuple xq ∈ X q, and for any function f : X → Y , f(xq) denotes

the q-tuple (f(x1), . . . , f(xq)) ∈ Yq. For a set I ⊆ [q] and a q-tuple xq, xI denotes the

16
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tuple (xi)i∈I . By extending the notation, we write xI = (xα)α∈I for any abstract index

set I. Thus, xq is just a shorthand notation for x[q].

For n, r, s ∈ N, let xr ∈ ({0, 1}n)r, and ys ∈ ({0, 1}n)s. We define the longest common

prefix of xr and ys, denoted lcpn(xr, ys), as

lcpn(xr, ys) :=

0 if x1 6= y1,

i if (x1, . . . , xi) = (y1, . . . , yi) and xi+1 6= yi+1,

and the longest common suffix of xr and ys, denoted lcsn(xr, ys), as

lcsn(xr, ys) :=

0 if xr 6= ys,

i if (xr−i+1, . . . , xr) = (ys−i+1, . . . , ys) and xr−i 6= ys−i,

It is easy to see that lcpn(xr, ys), lcsn(xr, ys) ≤ min{r, s}. The subscript n is dropped

whenever it is clear from the context.

COMPATIBILITY OF TUPLES: For a pair of tuples xq, yq ∈ X q, (xq, yq) denotes the 2-ary

q-tuple ((x1, y1), . . . , (xq, yq)). An n-ary q-tuple is defined analogously.

1. A 2-ary q-tuple (xq, yq) is called function compatible, denoted xq ↔ yq, if xi =

xj =⇒ yi = yj .

2. A 2-ary q-tuple (xq, yq) is called permutation compatible, denoted xq ! yq, if xi =

xj ⇐⇒ yi = yj .

3. A 3-ary tuple (tq, xq, yq) is called tweakable permutation compatible, denoted by

(tq, xq)! (tq, yq), if (ti, xi) = (tj , xj) ⇐⇒ (ti, yi) = (tj , yj).

2.2 Security Game, Adversary and Advantage

In (symmetric-key) cryptology the security of a given scheme is argued via various se-

curity games. A security game is nothing but an interactive game involving two parties:

an adversary A that tries to break some scheme with respect to some security notion,

and an oracle O that either represents the ideal object or the real scheme.

ADVERSARY AND ORACLE: An adversary A is an interactive Turing machine (or an

algorithm)1 that interacts with a given set of oracles that appear as black boxes to A . An

oracle O is nothing but an interface to a set of functions. For an oracle O, A O denotes

1We deliberately withheld the adjective “efficient”, as we will allow computationally unbounded ad-
versaries in some cases.
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the output of A after its interaction with O. Based on A ’s response, the security game

results in either success or failure.

DISTINGUISHING GAME: Looking ahead momentarily, in the context of this thesis, we

mostly consider security game as a standard distinguishing game with an optional set

of additional restrictions, chosen to reflect the desired security goal(s). For instance,

some security games give bidirectional access to the underlying function of an oracleO
and its inverse. This is denoted by O±. In a distinguishing game, the adversary or distin-

guisher A tries to distinguish between two sets of oracle(s), say O0 and O1. It interacts

with the oracle(s) at hand (either O0 or O1) and then outputs a single bit response.

We say that A wins the distinguishing game if A Ob = b for b ∈ {0, 1}. Formally, the

distinguishing advantage of A is defined as

AdvO1;O0(A ) :=
∣∣∣Pr
[
A O1 = 1

]
− Pr

[
A O0 = 1

]∣∣∣ (2.1)

CONVENTIONS: O0 conventionally represents an ideal primitive, while O1 represents

either an actual construction or a mode of operation built of some other ideal primi-

tives. Typically, the goal of the function represented byO1 is to emulate the ideal prim-

itive represented byO0. We use the standard terms ideal oracle and real oracle forO0 and

O1, respectively. When we talk of distinguishing advantage with a specific distinguish-

ing game G in mind, we include g in the superscript, i.e., Adv
g
O1;O0

(A ). Usually, the

ideal oracle O0 is completely identified by G, and hence dropped from the subscript.

In this thesis, we assume that the adversary is non-trivial, i.e. it never makes a duplicate

query, and it never makes a query for which the response is already known due to some

previous query. Typically, any adversary’s resources will be measured by a subset of

the following parameters:

• q, denotes the upper bound on the number of queries made by the adversary.

• `, denotes the upper bound on the length of any query.

• σ, denotes the upper bound on the aggregate total length of all queries.

• t, denotes the upper bound on the computation time allowed to the adversary.

The actual parameters would depend upon the security game. We write A(res) to de-

note the set of all adversaries whose resources are bounded by the tuple of parameters

res.



Chapter 2. Preliminaries 19

2.2.1 The Expectation Method and Coefficient H-Technique

Let A be a computationally unbounded and deterministic2 distinguisher. We denote

the query-response tuple of A ’s interaction with its oracle by a transcript ω. This may

also include any additional information the oracle chooses to reveal to the distinguisher

at the end of the query-response phase of the game. We denote by Θ1 (res. Θ0) the

random transcript variable when A interacts with O1 (res. O0). The probability of

realizing a given transcript ω in the distinguishing game with an oracle O is known

as the interpolation probability of ω with respect to O. Note that, for a transcript to be

realized, two things need to happen:

• The distinguisher needs to make the queries listed in the transcript;

• The oracle needs to make the corresponding responses.

Of these, the former is deterministic; the latter, probabilistic. Thus, when we talk of

interpolation probability, we are only concerned with the oracle responses, with the

assumption that the distinguisher’s queries are consistent with the transcript. For any

other distinguisher, the interpolation probability is trivially 0. A transcript ω is said to

be attainable if Pr [Θ0 = ω] > 0. The expectation method (stated below) is quite useful

in obtaining upper bounds on the distinguishing advantage in many cases [85, 90, 91].

Lemma 2.2.1 (Expectation Method [90]). Let Ω be the set of all realizable transcripts. For

some εbad > 0 and a non-negative function εratio : Ω→ [0,∞), suppose there is a set Ωbad ⊆ Ω

satisfying the following:

• Pr [Θ0 ∈ Ωbad] ≤ εbad;

• For any ω /∈ Ωbad,
Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− εratio(ω).

Then for any deterministic distinguisher A that distinguishesO1 fromO0, we have the follow-

ing bound on its distinguishing advantage:

AdvO1;O0(A ) ≤ εbad + Ex [εratio(Θ0)],

where Ex [X] denotes the expectation of random variable X.

Proof. A proof of the technique is given in [90], and we reproduce it here for the sake

of completeness. As A is deterministic, its advantage is at most the statistical distance

2One can always replace a probabilistic adversary with a deterministic one (with at least the same
advantage) given unbounded computation time.
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between Θ0 and Θ1 (see [48, 90, 106, 144, 159]). Thus, we have,

AdvO1;O0(A ) =
∣∣∣Pr
[
A O1 = 1

]
− Pr

[
A O0 = 1

]∣∣∣
≤
∑
ω∈Ω

max
{

0,Pr [Θ0 = ω]− Pr [Θ1 = ω]
}

≤
∑

ω∈Ωbad

Pr [Θ0 = ω] +
∑

ω∈Ω\Ωbad

Pr [Θ0 = ω] ·max

{
0, 1− Pr [Θ1 = ω]

Pr [Θ0 = ω]

}
≤ εbad + Ex [εratio(Θ0)].

The coefficient-H technique due to Patarin [158, 159] is a simple corollary of this result

where εratio is a constant function.

Corollary 2.2.2 (Coefficient-H Technique [158, 159]). Let Ω be the set of all realizable tran-

scripts. For some εbad, εratio > 0, suppose there is a set Ωbad ⊆ Ω satisfying the following:

• Pr [Θ0 ∈ Ωbad] ≤ εbad;

• For any ω /∈ Ωbad,
Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− εratio.

Then for any deterministic distinguisher A that distinguishesO1 fromO0, we have the follow-

ing bound on its distinguishing advantage:

AdvO1;O0(A ) ≤ εbad + εratio.

In context of the coefficient-H technique, we note that in an independent work [23]

Bernstein rediscovered a similar result, called the interpolation theorem. This was later

strengthened by Nandi [144] as the strong interpolation theorem.

2.3 (Tweakable) Block Cipher and (XOR) Universal Hash

For X ,Y ⊂ {0, 1}∗, we write Perm(X ) to denote the set of all permutations over X ,

and Func(X ,Y) to denote the set of all functions from X to Y . For K,X ⊂ {0, 1}∗,
BPerm(K,X ) denotes the set of all families of permutations πk := π(k, ·) ∈ Perm(X ),

indexed by k ∈ K. We sometime extend this notation for some T ⊂ {0, 1}∗, whereby

BPerm(K, T ,X ) denotes the set of all families of permutations π(k,t), indexed by (k, t) ∈
K×T . For K,X ,Y ⊂ {0, 1}∗, BFunc(K,X ,Y) denotes the set of all families of functions

γk := γ(k, ·) ∈ Func(X ,Y), indexed by k ∈ K. We will drop the parametrization of these

sets (of functions/permutations), whenever the parameters are clear from the context.
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2.3.1 (Tweakable) Block Cipher

A block cipher E-n/κ, with key size κ and block size n is a family of permutations

E ∈ BPerm({0, 1}κ, {0, 1}n). For k ∈ {0, 1}κ, we denote Ek(·) := E(k, ·), and E−1
k (·) :=

E−1(k, ·). A tweakable block cipher Ẽ-n/τ/κ, with key size κ, tweak size τ and block size

n is a family of permutations Ẽ ∈ BPerm({0, 1}κ, {0, 1}τ , {0, 1}n). For k ∈ {0, 1}κ and

t ∈ {0, 1}τ , we write Ẽtk(·) = Ẽk(t, ·) := Ẽ(k, t, ·), and Ẽ−tk (·) = Ẽ−1
k (t, ·) := Ẽ−1(k, t, ·).

Symmetric-key literature is filled with a plethora of (tweakable) block cipher candi-

dates. Some popular block ciphers include, AES-128/128 [52, 152], PRESENT-64/128

[38], Simon-128/192 and Speck-96/144 [11], GIFT-64/128 [8] etc. Deoxys-BC-128/128/128

and Kiasu-BC-128/64/128 [103], Skinny-128/128/128 and Mantis-64/64/128 [12] etc.,

are some examples of tweakable block ciphers.

Throughout the thesis, we fix κ, τ, n ∈ N as the key size, tweak size and block size,

respectively, of the given (tweakable) block cipher. We also write B = {0, 1}n and

T = {0, 1}τ . Accordingly, the elements of B, T, {0, 1}κ are referred as blocks, tweaks, and

keys, respectively. For some k ≥ 0, a tuple xk ∈ Bk is called block tuple (or block sequence).

Similarly, xk ∈ Tk is called tweak sequence. Sometimes, we also write |x|n = d|x|/ne to

denote the block-length of x.

Let η : N → N be a function such that for all r ∈ N, r
η7−→ s, where s � 2r. Throughout,

we use η(n) to denote a sufficiently large input length. Accordingly, we almost always

write η to mean η(n). For any finite set S ⊂ {0, 1}∗, we write Sη∗ to denote the set

∪ηi=0Si. The set Sη+ is defined analogously.

We define the padding function pad : {0, 1}η∗ → (Bn)η
+

by the following mapping

∀M ∈ {0, 1}η∗ , M = pad(M) :=

M‖10n|M |n−|M |−1 if n - |M |,

M otherwise.

2.3.1.1 (Tweakable) Strong Pseudorandom Permutation

In the Strong Pseudorandom Permutation or SPRP security game, the distinguisher

A tries to distinguish a block cipher E-n/κ instantiated with a key K←$ {0, 1}κ from

a uniform random permutation Π←$ Perm(B). The SPRP advantage of A against E is

defined as

Advsprp
E (A ) := AdvE±;Π±(A ) (2.2)
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For ε ∈ [0, 1], a block cipher family E is called (q, t, ε)-SPRP, if we have

Advsprp
E (q, t) := max

A ∈A(q,t)
Advsprp

E (A ) ≤ ε.

Note that, the distinguisher is given bidirectional access to the oracles. When the

distinguisher is restricted to forward-only queries, the security game is called PRP.

Advprp
E (A ) and Advprp

E (q, t, ε) are defined analogously as above with appropriate re-

strictions on oracle access.

In the Tweakable SPRP or TSPRP security game, the distinguisher A tries to distin-

guish a tweakable block cipher Ẽ-n/τ/κ instantiated with a key K←$ {0, 1}κ from a

uniform tweakable random permutation Π̃←$ BPerm(T,B). The TSPRP advantage of

distinguisher A against Ẽ is defined as

Advtsprp

Ẽ
(A ) := Adv

Ẽ±;Π̃±
(A ). (2.3)

For ε ∈ [0, 1], a tweakable block cipher family Ẽ is called (q, t, ε)-TSPRP, if we have

Advtsprp

Ẽ
(q, t) := max

A ∈A(q,t)
Advtsprp

Ẽ
(A ) ≤ ε,

where q and t are defined analogous to SPRP game. When the distinguisher is re-

stricted to forward-only queries, the security game is called TPRP. Advtprp

Ẽ
(A ) and

Advtprp

Ẽ
(q, t, ε) are defined analogously as above with appropriate restrictions on ora-

cle access.

Throughout the thesis, we use Π and Π̃ to denote uniform random permutation and

uniform tweakable random permutation, respectively, over suitable sets which will be

clear from the context.

2.3.2 (XOR) Universal Hash Functions

For some k ∈ N, K,X ⊂ {0, 1}η(k)∗ , and Y = {0, 1}k, a (K,X ,Y)-hash function H is

a family of functions H ∈ BFunc(K,X ,Y) defined over its domain or message space X ,

digest or hash space Y and indexed by the key space K.

There are several popular notions of universality for hash functions in literature [43, 57,

117, 132, 139, 171, 176, 185]. We discuss some of them which will be used later on in

this thesis.

For the sake of simplicity, we letH denote the multiset {Hi : i ∈ K}, and H = HK where

K←$K. Thus, H←$H.
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Definition 2.3.1 (Almost XOR universal hash function [117, 170]). A (K,X ,Y)-hash

function H is called ε-almost XOR universal or AXU for some ε ∈ [0, 1], if for any x2 ∈
(X )2 and any δ ∈ Y , the differential probability is at most ε. In other words, we have

Pr
H←$H

[H(x1)⊕ H(x2) = δ] ≤ ε. (2.4)

When δ = 0, the 0-differential event is equivalent to a collision in hash value. This

special case is handled by universal hash functions.

Definition 2.3.2 (Almost universal hash function [43]). A (K,X ,Y)-hash family H is

called ε-almost universal or AU for some ε ∈ [0, 1], if for any x2 ∈ (X )2, the collision

probability is at most ε. In other words, we have

Pr
H←$H

[H(x1) = H(x2)] ≤ ε. (2.5)

The notion of AXU hash functions was first introduced by Krawczyk [117] and later by

Rogaway [170], as a generalization of the original universal hash definition by Carter

and Wegman [43, 185]. Multi-linear hash [87, 177], PDP hash [36, 87, 118, 188], CBC

[62] and PHash [35] are some popular examples of A(X)U hash functions.

In [132], Mennink gave a slightly generalized notion of AXU, called `-wise independent

AXU or AXU`, for ` ≥ 2.

Definition 2.3.3 (`-wise Independent AXU hash function [132]). A (K,X ,Y)-hash fam-

ily H is called ε-AXU` for some ε ∈ [0, 1], if for any j ∈ [`] \ {1}, any xj ∈ (X )j , and any

δj−1 ∈ Yj−1 we have

Pr
H←$H

[H(x1)⊕ H(x2) = δ1, . . . ,H(x1)⊕ H(xj) = δj−1] ≤ εj−1. (2.6)

In [132], Mennink suggested some ways to construct AXU` hash function family over

a small domain using finite field arithmetic. Note that, `-wise independent hash func-

tions [185] are also AXU`.

Minematsu and Iwata [139] introduced the notion of ε-partial-almost-XOR-universal or

pAXU hash functions to capture simultaneous collision and differential events on two

disjoint substrings of any hash value.

Definition 2.3.4 (ε-partial-almost-XOR-universal hash function [139]). A (K,X ,Y1 ×
Y2)-hash function H is called ε-partial-almost-XOR-universal (or pAXU) if for all x2 ∈
(X )2 and δ ∈ Y2, we have

Pr
H←$H

[
H(x)⊕ H(x′) = (0, δ)

]
≤ ε. (2.7)
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2.3.2.1 Combiners of Hash Functions

We consider two types of combiners of A(X)U hash functions.

• Concatenated Hash — Let Hi be a (Ki,X ,Yi) hash family for i ∈ [2]. The concate-

nated hash H1‖H2 is a (K1×K2,X ,Y1×Y2) hash family defined by the following

mapping:

(K1,K2, x) 7→ H1(K1, x)‖H2(K2, x).

• Sum Hash — Let Hi be a (Ki,Xi,Y) hash family for i ∈ [2]. The sum hash H1⊕H2

is a (K1 ×K2,X1 ×X2,Y) hash family defined by the following mapping:

((K1,K2), (x1, x2)) 7→ H1(K1, x1)⊕H2(K2, x2).

Some easily verifiable properties of (p)A(X)U hash functions are accumulated in propo-

sition 2.3.5.

Proposition 2.3.5. Let Hi be a (Ki,Xi,Yi) hash family for i ∈ [2], and H1 and H2 are keyed

independently. Then, we have

1. If H1 is an ε-AXU hash, then it is an ε-AU hash.

2. For X1 = X2, consider the concatenated hash H1‖H2.

(a) If Hi is εi-AXU hash for i ∈ [2], then H1‖H2 is an ε1ε2-AXU hash.

(b) If H1 is ε1-AU hash and H2 is ε2-AXU hash, then H1‖H2 is an ε1ε2-pAXU hash.

3. For Y1 = Y2, consider the sum hash H1 ⊕ H2. If Hi is εi-AXU hash for i ∈ [2], then

H1 ⊕H2 is max{ε1, ε2}-AXU hash.

4. For k ≤ m ∈ N and Y1 = {0, 1}m, if H1 is an ε1-AXU, then the truncated hash

msbk ◦H1 is an ε12m−k-AU hash function.

2.4 Message Authentication Codes

A message authentication code or MAC is a tuple of algorithms M = (M+,M−), defined

over the key space K, nonce space N , message spaceM, and tag space T , where:

M+ : K ×N ×M→ T M− : K ×N ×M× T → {>,⊥}.
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Here M+ and M− are called the tag-generation and tag-verification algorithms, re-

spectively, and > and ⊥ denote the authentication success and failure symbols, respec-

tively. Further, it is required that M−(K,N,M+(K,N,M)) = > for any (K,N,M) ∈
K × N ×M. For all key K ∈ K, we write M+

K(·) and M−K(·) to denote M+(K, ·) and

M−(K, ·), respectively. In this thesis, we have K, T ⊆ Bη+ , N ∈ Bη∗ andM∈ {0, 1}η∗ .

MACs can be classified into two classes based on the cardinality of N :

1. Deterministic MACs: When the nonce space is empty, i.e., N = ∅, the MAC

scheme is classified as a deterministic MAC. Some popular deterministic MACs

include, CBC-MAC [65], EMAC [15, 21], ECBC, FCBC and XCBC [34], TMAC

[121], OMAC [97, 155], GCBC1 and GCBC2 [147], PCS [23], PMAC [35], Light-

MAC [126], SUM-ECBC [189], PMAC+[190], LightMAC+[143] etc.

2. Non-deterministic MACs: When the nonce space is non-empty, i.e., N 6= ∅, the

MAC scheme is classified as a non-deterministic MAC. Now, depending upon

the nature of the nonce value in tag-generation algorithm, we may have two sub-

classifications:

(a) Stateful MACs: In stateful MACs, each invocation of the tag-generation al-

gorithm requires a distinct nonce value, i.e., each nonce value is used only

once in tag-generation calls. In other words, the tag-generation algorithm is

stateful. The uniqueness of nonce value is, in general, necessary for security,

though there are some schemes which allow some amount of nonce repe-

titions. Some popular nonce-based MACs include, Wegman-Carter MACs

[185], XMACC [16], WMAC [33], EWCDM [49], DWCDM [58], nEHtM [64] etc.

(b) Probabilistic MACs: In probabilistic MACs, the nonce value is treated as

random salt in the tag-generation algorithm, i.e., the nonce value is sam-

pled uniformly at random in each tag-generation call. In other words, the

tag-generation algorithm is probabilistic. Some popular probabilistic MACs

include, XMACR [16], MACRX [17], RMAC [102], FRMAC [101], EHtM [136],

RWMAC [136] etc.

In this thesis, we will mainly focus on deterministic MACs.

2.4.1 MAC Security Definition

In MAC security game, a non-trivial adversary A has oracle access to M+
K and M−K

for K←$K. It can make “MAC” queries to M+
K and “verification” queries to M−K in

arbitrary order. We say that A forges if any of its verification queries to M−K returns >.



Chapter 2. Preliminaries 26

Suppose A halts with response 1 if it was successful in forgery, and 0 otherwise. The

MAC advantage of A against M is defined as

Advmac
M (A ) := Pr

K←$K

[
A (M+,M−) = 1

]
. (2.8)

Note that, the non-triviality of A means that A is not allowed to ask a verification

query (N,M, T ) if it has previously made a MAC query (N,M). Further, for non-

deterministic MACs the adversary abides by the following restrictions:

• For stateful MACs, the adversary cannot repeat the nonce value in any MAC

query, although it is allowed to repeat nonces in verification queries.

• For probabilistic MACs, the salt value is chosen uniformly at random in all MAC

queries. In verification queries the adversary is allowed to pick the salt value

freely.

In MAC game, we use the following notations to parametrize adversary’s resources:

qm and qv denote the number of queries to M+
K and M−K , respectively; `m and `v denote

the maximum permissible message length in tag-generation and verification queries,

respectively; σm and σv denote the maximum permissible aggregate total length across

all tag-generation and verification queries, respectively. We also write q = qm + qv,

` = `m + `v, and σ = σm + σv to denote the combined query resources. For ε ∈ [0, 1], M

is called a (q, `, σ, t, ε)-MAC if and only if,

Advmac
M (q, `, σ, t) := max

A ∈A(q,`,σ,t)
Advmac

M (A ) ≤ ε.

2.4.2 Some MAC Design Paradigms

We explain two popular MAC design paradigms which will be frequently used in this

thesis. First, we discuss an important symmetric-key primitive called pseudorandom

function or PRF [76] which are quite useful in constructing MAC schemes.

2.4.2.1 Pseudorandom Function

A keyed function F is a family of functions F ∈ BFunc(K,X ,Y). In the Pseudorandom

Function or PRF security game, the distinguisher A tries to distinguish a keyed func-

tion F instantiated with a key K←$K from a uniform random function Γ←$ Func(X ,Y).

The PRF advantage of A against F is defined as

Advprf
F (A ) := AdvFK;Γ(A ). (2.9)



Chapter 2. Preliminaries 27

For ε ∈ [0, 1], F is called a (q, t, ε)-PRF if we have

Advprf
F (q, t) := max

A ∈A(q,t)
Advprf

F (A ) ≤ ε.

Throughout the thesis, we use Γ to denote a uniform random function over suitable

sets which will be clear from the context.

The following proposition is a well-known result [15, 76, 77] which shows that the PRF

security of the tag-generation algorithm of any deterministic MAC scheme is sufficient

for MAC security of that scheme. In other words, any PRF construction can be viewed

as a secure deterministic MAC scheme. Indeed, most of the provable security results

on deterministic MAC schemes show PRF security, which implies MAC security.

Proposition 2.4.1 (PRF =⇒ MAC). For any deterministic MAC scheme M, if M+ is a

(qm, `m, σm, t, ε)-PRF then M is (q, `, σ, t, ε+ qv/|T |)-MAC.

We skip the proof of this proposition as it is rather straightforward and available in

[15].

2.4.2.2 Hash-then-PRF

For finite sets K1,K2,M,X ,Y ⊂ {0, 1}η∗ , let H ∈ BFunc(K1,M,X ) be an ε-AU hash

function, and F ∈ BFunc(K2,X ,Y) be a keyed function. The composition function F◦H
is known as Hash-then-PRF construction. It is probably the easiest and most popular

way of constructing a PRF over variable-length inputs. Many PRF constructions, in-

cluding, EMAC [15, 21], ECBC and FCBC [34], PMAC [35], and LightMAC [126], follow

this paradigm. The following result due to Shoup [183] quantifies the PRF security of

F ◦H .

Proposition 2.4.2 (Hash-then-PRF [183]). Let H and F be defined as above. Then, we have

Advprf
F◦H(q, `, σ, t) ≤ Advprf

F (q, t′) +

(
q

2

)
ε, (2.10)

where t′ = t+ qO(TH) and TH denotes the time complexity of computing H .

A proof of this proposition is available in many places, including [183] and [106]. In

real-life applications for Y = X = B, we often use a PRP E (some popular block ci-

pher E-n/κ) in place of F. Accordingly, we call the composition “Hash-then-PRP”. The

following equation on the PRF security of Hash-then-PRP is a direct consequence of

Proposition 2.4.2 and the PRP-PRF switching lemma [14, 47, 183].
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Proposition 2.4.3 (Hash-then-PRP). Let H and E be defined as above. Then, we have

Advprf
E◦H(q, `, σ, t) ≤ Advprp

E (q, t′) +

(
q

2

)
ε+

(
q

2

)
1

2n
, (2.11)

where t′ = t+ qO(TH) and TH denotes the time complexity of computing H .

Since PRF implies deterministic MAC, Hash-then-PRF and Hash-then-PRP are natural

paradigms for constructing deterministic MACs.

2.4.2.3 Hash-then-Mask

For finite sets K1,K2,M,N ⊂ {0, 1}η∗ , let H ∈ BFunc(K1,M,B) be an ε-AXU hash

function, and F ∈ BFunc(K2,N ,B) be a keyed function. The function F⊕H , defined by

the mapping

(K,L,N,M) 7→ FK(N)⊕HL(M)

for all (K,L,N,M) ∈ K1 ×K2 ×N ×M, is known as the Hash-then-Mask construction.

Here N and M denote the nonce/salt and message space, respectively. Many non-

deterministic MACs, including Wegman-Carter MAC [185], XMACC and XMACR [16],

follow this paradigm. Hash-then-Mask was proposed by Wegman and Carter [185],

whence it is often referred as the Wegman-Carter authenticator. The following result

due to Wegman and Carter [185] quantifies the MAC security of F⊕H .

Proposition 2.4.4 (Wegman-Carter [185]). Let H and F be defined as above. Then,

1. for stateful or nonce-based MACs, we have

Advmac
F⊕H(q, `, σ, t) ≤ Advprf

F (q, t′) + qvε, (2.12)

2. for probabilistic MACs, we have

Advmac
F⊕H(q, `, σ, t) ≤ Advprf

F (q, t′) +

(
qm
2

)
1

2n
+ qvε, (2.13)

where t′ = t+ qO(TH) and TH denotes the time complexity of computing H .

A proof of this proposition is available in multiple places, including [185], [25] and [49].

Shoup [182] gave a variant of Hash-then-Mask, in which the mask is computed using

a PRP E ∈ BPerm(K2,N ) for N = B, instead of a PRF. We call the resultant scheme

“Wegman-Carter-Shoup” authenticator. The poly1305 MAC by Bernstein [24] is di-

rectly based on Wegman-Carter-Shoup. The following proposition, due to Bernstein

[25], quantifies the MAC security of E⊕H .
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Proposition 2.4.5 (Wegman-Carter-Shoup). Let H and E be defined as above. Then,

1. for stateful or nonce-based MACs, we have

Advmac
E⊕H(q, `, σ, t) ≤ Advprp

E (q, t′) + qvε
(

1− qm
2n

)− qm+1
2

, (2.14)

2. for probabilistic MACs, we have

Advmac
E⊕H(q, `, σ, t) ≤ Advprp

E (q, t′) + qvε
(

1− qm
2n

)− qm+1
2

+

(
qm
2

)
1

2n
, (2.15)

where t′ = t+ qO(TH) and TH denotes the time complexity of computing H .

We remark that Bernstein [25] only proved the first part of Proposition 2.4.5. The second

part can be easily derived from the first one by including an additional term to account

for the probability of salt collision among any pair of distinct tag-generation queries.

2.5 Online Encryption Schemes

An online encryption scheme or online cipher, is a tuple of algorithms O = (O+,O−),

defined over the key space K and message space Bη∗ , where:

O+ : K × Bη
∗ → Bη

∗
O− : K × Bη

∗ → Bη
∗
,

and O+
K(·) = O+(K, ·) is a length-preserving permutation over Bη∗ satisfying the online

property: x ∈ Bη∗ is a prefix of y ∈ Bη∗ if and only if O+
K(x) is a prefix of O+

K(y). O−K is

defined as the inverse of O+
K , i.e., for all x ∈ Bη∗ , O−K(O+

K(x)) = x.

In their foundational paper Bellare et al. [18] proposed CBC like constructions with

online property, viz. HCBC1 and HCBC2, both of which employed one call to block ci-

pher and one call to an almost XOR universal (AXU) hash function. HPCBC, proposed

by Boldyreva and Taesombut [39], was a variant of HCBC2 that prepends the encryp-

tion of a random IV in order to fit a stronger notion. Nandi [145, 146] proposed simpler

proofs for HCBC1 and HCBC2, and gave two improved schemes called MHCBC and

MCBC. Among these MCBC has the feature of replacing the call to a hash function by

a second call to the block cipher.

In [173] Rogaway and Zhang proposed three schemes, namely TC1, TC2, and TC3,

based on tweakable block ciphers. These schemes exploited the tweak input of TBCs to

eliminate the additional calls to hash function/block cipher. In an independent work
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Fleischmann et al. [70] presented a scheme called MCOE-G which is similar to TC3,

albeit with a more practical handling of arbitrary length inputs.

For a variant of online property called diblock-online, Bhaumik and Nandi [29] gave an

inverse-free construction called OleF, that achieved diblock-online SPRP security. Apart

from these, several online ciphers were also proposed within full fledged authenticated

encryption schemes [1, 3, 4, 40, 56].

Recently, Forler et al. [71] proposed an online cipher POEx, based on a tweakable block

cipher and pAXU hash function, that was claimed to have beyond-the-birthday bound3

(BBB) security. Later, this claim was refuted (see chapter 6). Consequently, in a journal

version of the same work Forler et al. proposed a modified definition [72] for POEx that

provides BBB security under a strong assumption on the underlying hash function.

2.5.1 OSPRP Security Definition

We let Operm(Bη∗) to be the set of all online permutations over Bη∗ , and
#»

Π←$ Operm(Bη∗).

In the Online Strong Pseudorandom Permutation or OSPRP security game, the distin-

guisher A tries to distinguish an online cipher O instantiated with a key K←$K from

an online uniform random permutation
#»

Π. The OSPRP advantage of A against O is

defined as

Advosprp
O (A ) := AdvO±;

#»
Π±(A ). (2.16)

For ε ∈ [0, 1], O is called a (q, `, σ, t, ε)-OSPRP if we have

Advosprp
O (q, `, σ, t) := max

A ∈A(q,`,σ,t)
Advosprp

O (A ) ≤ ε.

Throughout the thesis, we use
#»

Π to denote a uniform online random permutation over

some suitable set(s) which will be clear from the context.

2.6 Authenticated Encryption with Associated Data

An authenticated encryption scheme with associated data functionality, or AEAD in short,

is a tuple of algorithms A = (A+,A−), defined over the key space K, nonce space N ,

associated data space A, message spaceM, ciphertext space C, and tag space T , where:

A+ : K ×N ×A×M→ C × T and A− : K ×N ×A× C × T →M∪ {⊥}.
3Secure up to 2xn queries for some x ∈ (0.5, 1].



Chapter 2. Preliminaries 31

Here, A+ and A− are called the encryption and decryption algorithms, respectively, of

A, and ⊥ denotes the error symbol used to indicate authentication failure. Further, it

is required that A−(K,N,A,A+(K,N,A,M)) = M for any (K,N,A,M) ∈ K × N ×
A×M. For all key K ∈ K, we write A+

K(·) and A−K(·) to denote A+(K, ·) and A−(K, ·),

respectively.

In this thesis, we have K, T ⊆ Bη+ , N ,A,M ∈ {0, 1}η∗ and C = M, so we use M
instead of C wherever necessary. In addition, in most popular authenticated encryption

schemes (including the OCB family), the map projM ◦ Enc(K,N,A, ·) for fixed K, N ,

and A is a length-preserving permutation, where projM :M×T →M is the projection

onM, and T = {0, 1}kn for some fixed k ∈ N.

AEAD schemes can be classified based on the cardinality of N , much in the same vein

as MAC schemes. There are some good examples of deterministic AEAD (N = ∅)
schemes based on the SIV paradigm by Rogaway and Shrimpton [172]. GCM-SIV

[84], GCM-SIV2 and its generalized variant GCM-SIVr [99], and the lightweight scheme

SUNDAE [9] are some of the notable SIV-based deterministic AEAD schemes. A major

issue with SIV-based constructions is efficiency. These schemes are inherently two-

pass, i.e., the message input is read twice, which makes them slow (and somewhat less

popular) as compared to single-pass nonce-based (N 6= ∅) AEAD schemes. Some of

the popular nonce-based AEAD schemes include CCM [186], GCM [130], OCB3 [119],

COLM [5], Ascon [61], Beetle [44] etc.

In this thesis, we will concentrate on nonce-based AEAD. Particularly, we focus on the

provable security of OCB family [119, 171, 174, 174].

2.6.1 NAEAD Security Definition

In the nonce-respecting AEAD or NAEAD security game, the adversary A tries to

distinguish between (A+
K ,A

−
K) and (Γ,⊥), where

Γ←$ {f ∈ Func[N×A×M,M×T ] : ∀(N,A,M) ∈ N×A×M, |f(N,A,M)| = |M |+kn},

and ⊥ : N × A ×M × T → {⊥}, respectively. The distinguishing adversary oper-

ates under the restriction — no two encryption queries can have the same nonce. The

NAEAD advantage of any adversary A against A is defined as

Advnaead
A (A ) := AdvA±;(Γ,⊥)(A ). (2.17)

In NAEAD game, we use the following notations to parametrize adversary’s resources:

qe and qd denote the number of queries to A+
K and A−K , respectively; `e and `d denote
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the maximum permissible input (associated data and message/ciphertext) lengths in

encryption and decryption queries, respectively; σe and σd denote the sum of input

lengths across all encryption and decryption queries, respectively. We also write q =

qe+qd, ` = `e+`d and σ = σe+σd to denote the combined query resources. For ε ∈ [0, 1],

A is called a (q, `, σ, t, ε)-NAEAD if and only if,

Advnaead
A (q, `, σ, t) := max

A ∈A(q,`,σ,t)
Advnaead

A (A ) ≤ ε.

Note that, security under this formulation covers the two standard security goals of

authenticated encryption:

1. Privacy: Security against an adversary who tries to distinguish the AE or AEAD

construction from an ideal random function Γ using encryption queries, and

2. Integrity: Security against an adversary who tries to make a successful forging

attempt on the scheme using both encryption and decryption queries.
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Analysis of Message Authentication

Codes
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Chapter 3

Pseudorandom Permutation based

CBC-MAC Family

This chapter studies the security of one of the most popular family of message authen-

tication codes, the CBC-MAC family. CBC-MAC is a block cipher based MAC construc-

tion which is based on the CBC mode of operation [153] invented by Ehrsam et al.

[65]. The CBC-MAC was an international standard [95], which was proven to be secure

for fixed length messages in [15, 27], and for prefix-free1 messages in [80, 162]. The

fixed length constraint is not desired in practice. One way to circumvent this is to use

the length of message as the first block in CBC-MAC computation. But this requires

prior knowledge of the message length. A more reasonable and popular approach is

to encrypt the CBC-MAC output with an independent keyed permutation. This later

approach called EMAC was first proposed during the RACE project [21]. Petrank and

Rackoff [162] proved that EMAC is secure for all messages in its message space.

Although the EMAC construction is tolerant to variable length messages it has a domain

limited to Bη+ . Later works by Black and Rogaway [34], and Iwata et al. [97, 121]

propose variants of CBC-MAC that theoretically2 work for any messages in {0, 1}η∗ .
We refer the readers to section 1.3.1 of chapter 1 for a brief overview on the historical

progress in the design and analysis of CBC-MAC and its family. In this chapter, we will

mainly concentrate on CBC-MAC and EMAC. However, we present some interesting

implications for ECBC and FCBC towards the end of the chapter.

1No two messages are prefix of each other.
2There could be some limitations on the length of messages due to security bounds.

34
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3.1 PRF Analysis of CBC-MAC and EMAC

Recall that proposition 2.4.1 shows that PRF security of deterministic MACs is sufficient

for MAC security. So, we concentrate on the PRF security of CBC-MAC and EMAC.

3.1.1 Permutation-based CBC-MAC and EMAC

In this chapter, we always consider the set Perm(B), and hence skip the parametrization

in Perm. The CBC (cipher block chaining) function (see Figure 3.1.1) with a permutation

π ∈ Perm, viewed as a key of the construction, takes as input a message M ∈ Bm

with m blocks and outputs CBCπ(M) := vπm. This is inductively computed as follows:

vπ0 (M) = 0n and for all i ∈ [m], we have

uπi (M) := vπi−1(M)⊕Mi,

vπi (M) := π(uπi (M)). (3.1)

We call uπ(M) := (uπi (M))i∈[m] and vπ(M) := (vπi (M))i∈(m], the intermediate input and

intermediate output vectors, respectively, associated to π and M . Note that, the inter-

mediate input vector uπ(M) is uniquely determined by vπ(M) (and does not depend

on the permutation π). We can write down this association generically as a func-

tion out2inM : Bm+1 → Bm mapping any block vector y to another block vector x

where xi = yi−1 ⊕ Mi for all i ∈ [m]. So for all permutations π ∈ Perm, we have

out2inM (vπ(M)) = uπ(M).

vπ0 ⊕⊕⊕

M1

π ⊕⊕⊕

M2

π ⊕⊕⊕

M3

π ⊕⊕⊕

M4

π vπ4
uπ1 vπ1 uπ2 vπ2 uπ3 vπ3 uπ4

Figure 3.1.1: Evaluation of CBC function over a 4-block message M . Note that, we
skipped M from the notations for intermediate input and output vectors for economi-

cal reasons.

Given the definition of CBCπ, one can easily define CBC-MAC and EMAC as follows:

1. CBC-MAC, based on a block cipher E instantiated with a key K ∈ K, is defined

as, CBC-MACEK (M) := CBCEK (M) for all M ∈ Bη∗ .

2. EMAC, based on a block cipher E instantiated twice with keys K1,K2 ∈ K, is

defined as, EMACEK1
,EK2

(M) := EK2(CBCEK1
(M)) for all M ∈ Bη∗ .

The first step in the analysis reduces the PRF analysis of CBC-MACE and EMACE,E to

the PRF analysis of CBC-MACΠ and EMACΠ1,Π2 , respectively, where Π, Π1 and Π2 are
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uniform random permutations over B and Π1 is statistically independent of Π2. This

step uses a standard hybrid argument that incurs additional cost of at most Advprp
E (σ, t)

and 2Advprp
E (σ, t) for CBC-MAC and EMAC, respectively. Formally, we have

Advprf
CBC-MACE

(q, `, σ, t) ≤ Advprp
E (σ, t) + Advprf

CBC-MACΠ
(q, `, σ) (3.2)

Advprf
EMACE,E

(q, `, σ, t) ≤ 2Advprp
E (σ, t) + Advprf

EMACΠ1,Π2
(q, `, σ) (3.3)

3.1.2 PRF Analysis of EMACΠ1,Π2

Let M and M ′ be two distinct messages having m and m′ many blocks, respectively,

and π ∈ Perm. Let Ocollπ(M,M ′) denote the event CBCπ(M) = vπm(M) = vπm′(M
′) =

CBCπ(M ′). We call Ocollπ(M,M ′) the output collision event for a pair of messages M

and M ′. One can similarly define the input collision event Icollπ(M,M ′) as the event

uπm(M) = uπm′(M
′). It is clear to see that Icollπ(M,M ′) is equivalent to Ocollπ(M,M ′),

as uπm(M) = uπm′(M
′) if and only if vπm(M) = vπm′(M

′). So henceforth we mainly focus

on the event Ocollπ(M,M ′), which is also referred as collision event.

By extending the notation, we similarly define the collision event for a tuple of q ≥ 2

distinct messages M q = (M1, . . . ,Mq), as

Ocollπ(M q) =
⋃

i 6=j∈[q]

Ocollπ(Mi,Mj). (3.4)

We define collision probability as outCP(M q) = Pr
[
OcollΠ1(M q)

]
.

Let outCPatk
q,`,σ = max

Mq
outCP(M q) where the maximum is taken over all q-tuples of dis-

tinct messages M q having at most ` blocks each, and the total length over all q queries

is at most σ. Further, the message tuple satisfies the input constraint atk, which could

be one of the following:

1. eq, messages must have equal length.

2. pf, no message is a prefix to others.

3. any, messages can be chosen arbitrarily within the specified length.

If no constraint is mentioned, assume any for collision events. Looking ahead momen-

tarily, we will use pf for full collision event (defined in the next subsection), and hence

in case of full collision we can always assume pf constraint.

Following [19, 34], we view EMAC as an instance of Hash-then-PRP paradigm [183]

(see chapter 2 section 2.4.2.2). This enables us to reduce the problem of bounding the
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PRF advantage of EMAC to bounding the collision probability. The following Eq. (3.5)

is a direct application of proposition 2.4.3.

Advprf
EMACΠ1,Π2

(q, `, σ) ≤ outCPany
q,`,σ +

q(q − 1)

2n+1
. (3.5)

Note that, outCPany
q,`,σ ≤

(
q
2

)
outCPany

2,` as the collision for q messages is the union of colli-

sion events for each of the
(
q
2

)
pairs of messages. Bellare et al. [19] proved that

outCPany
2,` ≤

2d′(`)

2n
+

64`4

22n
. (3.6)

where d′(`) = max`′≤` d(`′) and d(`′) is the the number of divisors of `′. In [187], Wigert

showed that d′(`) = `1/Θ(ln ln `) = `o(1). Using this bound of collision probability for a

pair of messages, we see that the PRF advantage of EMAC is about O(d′(`)q2/2n) for

` < 2n/4. Later Pietrzak [163] provided an improved analysis of EMAC and proved that

the PRF advantage of EMAC is about O(q2/2n) for ` < min{q1/2, 2n/8}. We revisit this

improved analysis later in section 3.5.

We remark that for equal length messages Dodis et al. claim that outCPeq
2,` = 2−n +

(d(`))2 · ` · 2−2n + `6 · 2−3n (see [62, Lemma 3]), which is tight (if true).

3.1.3 PRF Analysis of CBC-MACΠ

Let M and M ′ be two distinct messages having m and m′ many blocks, respectively,

and π ∈ Perm. Let Fcollπ(M,M ′) denote the event that

uπm′(M
′) ∈ uπ(M) ∪ {uπj (M ′) : j ∈ [m′ − 1]}.

We call this the full collision event for a pair of messages M and M ′. In other words,

if the event Fcollπ(M,M ′) ∪ Fcollπ(M ′,M) does not hold then uπm(M) and uπm′(M
′)

are “fresh” (did not appear before). Intuitively, for a uniform random permutation Π if

this event does not hold then the CBC output should behave “almost” randomly. This

intuition is one of the crucial steps in the PRF analysis of CBC-MAC.

Remark 3.1.1. We remark that in the original paper [19], the full collision event is de-

fined through the intermediate outputs instead of inputs. Since we only consider per-

mutation based CBC-MAC, equalities among inputs imply identical equalities among

outputs.
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By extending the notation, we define the full collision event for a tuple of q ≥ 2 distinct

messages M q = (M1, . . . ,Mq) as

Fcollπ(M q) =
⋃

i 6=j∈[q]

Fcollπ(Mi,Mj).

We define full collision probability as fullCP(M q) = Pr
[
FcollΠ(M q)

]
.

Analogous to outCPatk
q,`,σ, we have fullCPatk

q,`,σ = max
Mq

fullCP(M q). Note that, fullCPany
q,`,σ =

1 as one can always choose two messages M and M ′ such that M is a prefix of M ′,

whence the full collision holds trivially. So it only makes sense to study fullCP for input

constraints, eq and pf. This is fine as CBC-MAC is trivially insecure when the adversary

can make prefix queries (using the classical length extension attack). In [19], Bellare et

al. proved the following result

Advprf
CBC-MACΠ

(q, `, σ) ≤ q2(fullCPpf
2,` + 4`/2n). (3.7)

We state and prove another relation between PRF advantage of CBC-MAC and full

collision probability among q prefix-free messages. The above Eq. (3.7) would be a

straightforward application of the following result.

Proposition 3.1.2. For prefix-free queries, we have

Advprf
CBC-MACΠ

(q, `, σ) ≤ fullCPpf
q,`,σ +

2σq

2n
+

q2

2n+1
.

Proof. We use the coefficient-H technique to prove this proposition. Let Ω denote the

set of all transcripts realizable via a uniform random function Γ. A typical transcript

ω ∈ Ω is of the form (M q, T q), where M q ∈ (Bη+)q is prefix-free and T q ∈ Bq.

We say that a transcript ω ∈ Ω is bad, denoted ω ∈ Ωbad, if T q 6= T̂ q, i.e., there exist

i 6= j ∈ [q] such that Ti = Tj . We have

Pr [Θ0 ∈ Ωbad] ≤
(
q

2

)
1

2n
,

as there are at most
(
q
2

)
pairs (i, j) and for each such pair the equality Ti = Tj holds

with at most 2−n probability.

Now, fix a transcript ω = (M q, T q) ∈ Ω \ Ωbad. Then, we must have T q ∈ (B)q. For

i ∈ [q], let mi denote the length of Mi. Then mi ≤ ` and
∑

j∈[q]mj ≤ σ. In the ideal

world, we have

Pr [Θ0 = ω] = Pr [Γ(M q) = T q] =
1

2nq
. (3.8)

In the real world, a permutation π ∈ Perm is called bad if and only if
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1. Fcollπ(M q) holds, or

2. vπi (Mr) = Tr′ , for some r, r′ ∈ [q], i ∈ [mr].

Let badPerm = {π ∈ Perm : π is bad}. All other permutations π /∈ badPerm are called

good. We define an equivalence relation ∼ on Perm as π ∼ π′ if uπ(Mi) = uπ
′
(Mi)

for all i ∈ [q]. It is clearly an equivalence relation and a good permutation can only

be related with another good permutation and good permutations are unrelated with

bad permutations. An equivalence class consisting of good permutations is referred as

good equivalence class. Let C be a good equivalence class. Let s denote the cardinality

of ∪r∈[q]û
π(Mr), where π ∈ C. Recall that ûπ(Mr) denotes the set of distinct elements

in uπ(Mr). Note that, s is the same for all π ∈ C. Then, |C| = (2n − s)!, as the outputs

of exactly s inputs of π ∈ C are determined due to CBC computation on M q. Since the

Ti’s are not intermediate outputs, we have

|{π ∈ C : CBCπ(M q) = T q}| = (2n − s− q)!,

since q additional restrictions on input-output are being added. So for any class of good

permutations C,

Pr [CBCΠ(M q) = T q | Π ∈ C] =
(2n − s− q)!

(2n − s)!
≥ 2−nq. (3.9)

Thus,

Pr [Θ1 = ω] = Pr [CBCΠ(M q) = T q]

1
≥

∑
C is good

Pr [Π ∈ C]× Pr [CBCΠ(M q) = T q | Π ∈ C]

2
≥ Pr [Π ∈ Perm \ badPerm]× 2−nq

3
≥
(

1− Pr [Π ∈ badPerm]
)
× Pr [Θ0 = ω]

4
≥
(

1− fullCPpf
q,`,σ −

σq

2n−1

)
× Pr [Θ0 = ω].

where 1 to 2 follows from Eq. (3.9); 2 to 3 follows from Eq. (3.8); and 3 to 4 follows from

the two conditions for π ∈ badPerm. The first condition leads to the term fullCPΠ
q,`,σ.

The second condition says that we sample at most σ − q outputs of a random permu-

tation and one of them belongs to the set T̂ q. This can happen with probability at most

σq/(2n−σ+ q) which is further less than σq/2n−1 provided σ < 2n−1. If σ ≥ 2n−1, then

the above bound holds trivially.

The result follows from coefficient-H technique (Corollary 2.2.2).
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The bound in Proposition 3.1.2 is potentially a better bound than the original in Eq.

(3.7) as it uses the total number of blocks σ, which could be much less than `q in some

scenarios.3

Note that, fullCPpf
q,` ≤ q(q − 1)fullCPpf

2,` by considering all ordered pairs (Mi,Mj). This

proves the original claim from [19] as stated in Eq. (3.7). In [19], it is proved that

fullCPpf
2,` ≤

8`

2n
+

64`4

22n
. (3.10)

In section 3.2, we show a critical flaw in [19, Lemma 10]. This invalidates the proofs of

Eq. (3.6) and Eq. (3.10) given in [19]. Further, it also invalidates the security analysis

of EMAC in [163]. Consequently, we revise the bounds for outCPany
q,`,σ and fullCPpf

q,`,σ in

section 3.4. Moreover, our revised bound of fullCPpf
q,`,σ would be in the order σq/2n

instead of q2`/2n (whenever ` ≤ 2n/3). We also revise the analysis of [163] and obtain

a degraded bound in section 3.5. In the same section, we provide a simplified security

analysis for EMAC that achieves significantly improved bounds for message lengths

less than 2n/4.

3.2 Revisiting Structure Graph

In the previous section, we have seen how the PRF advantage of CBC-MAC or EMAC

is essentially reduced to the bound on probability of some collision events on internal

inputs or outputs of the underlying permutation. Thus, it would be useful to have an

object which deals with the intermediate inputs and outputs. Bellare et al. [19] intro-

duced one such object, called structure graph, and used it to bound the (full) collision

probabilities in [19]. In this section we revisit the structure graph formalism and show

that one of the main claims, namely [19, Lemma 10] about structure graphs is false.

Let us fix a tuple of messages M q for the rest of this chapter, where Mi ∈ Bmi and

mi ≤ ` for all i ∈ [q], and
∑

i∈[q]mi = m ≤ σ. In addition, we may put additional

constraint on these messages, like prefix-free property.

3.2.1 Intermediate Inputs and Outputs

INDEX SET: We first collect all intermediate inputs and outputs which are obtained

through the computation of CBCπ(Mr) for all r. These intermediate values will be

3Consider a scenario where most of the messages are of few kilobytes, but the maximum permissible
message length is in Gigabytes.
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defined as a sequence over a two-dimensional index set. Each index is a pair where the

first element of the pair corresponds to the message number and the second element is

the block number of that message. More formally, we define the index set

I = {(r, i) : r ∈ [q], i ∈ [mr]},

and the dictionary order ≺ on it as follows: (r, i) ≺ (r, i), and (r, i) ≺ (r′, i′) if r < r′

or r = r′ and i < i′. Let x be a sequence over this index set. For any r ∈ [q], the

subsequence (x(r,1), . . . , x(r,mr)) is denoted by xr∗. Sometimes we also consider the

index set I0 = I ∪ {(r, 0) : r ∈ [q]}, and the natural extension of the order ≺ on I0.

SEQUENCES FOR INTERMEDIATE INPUTS AND OUTPUTS: We denote the sequences of

intermediate outputs and inputs over the index set I0 and I as vπ(M q) and uπ(M q), re-

spectively, where ∀r ∈ [q], vπr∗(M q) := vπ(Mr), and uπr∗(M
q) := uπ(Mr).

For a single message M , we have previously seen that the intermediate input sequence

is uniquely determined by the intermediate output sequence, and we denoted the as-

sociation by a function out2inM . The same is true for q messages and we extend this

definition as follows: Given any block sequence y over the index set I0, we define

out2in(y) as a block sequence x over the index set I, where xr∗ = out2inMr(yr∗) for all

r ∈ [q]. Thus, for any π, we have out2inMq(vπ(M q)) = uπ(M q). Onwards, we selectively

skip the parametrization of v and u whenever the parameters are clear from the context.

3.2.2 Structure Graphs and Block-Vertex Structure Graphs

A block-vertex structure graph is a graph theoretic representation of intermediate out-

put sequence vπ. The block-vertex structure graph BStructπ = (Vπ, Eπ) for a permutation

π is defined by the labeled vertex set Vπ := v̂π, and the set of labeled edges

Eπ :=

q⋃
r=1

{(vπ(r,i−1), v
π
(r,i),M(r,i)) : i ∈ [mr]}.

Clearly, BStructπ is a union ofMr-walks (see section A.1.2 of appendix A) for all r ∈ [q],

and vertex 0n ∈ V has positive out-degree. Note that,

u
A−→ v ⇒ π(u⊕A) = v. (3.11)

So, for every v ∈ V , all outward edges (similarly for inward edges) have distinct edge labels.

Using this property, it is easy to see that the walks are unique and we denote them by

WMi or simply Wi whenever the message tuple is understood. See Figure 3.2.1 for a

possible block structure graph corresponding to a single message. It is clear to see that
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block structure graph is just another view in which the input and output vectors are

stored in a directed graph. While storing the intermediate sequences as a set of labeled

0
2

3
1

0

2

Figure 3.2.1: Let M1 = (1, 0, 2, 0, 2) and π(1) = 2, π(2) = 3. For any such π, we
have vπ = (0, 2, 3, 2, 3, 2) and uπ = (1, 2, 1, 2, 1). However, the graph consists of just
three vertices Vπ = {0, 2, 3} and edge set Eπ = {(0, 2, 1), (2, 3, 0), (3, 2, 2)}. We see
that the intermediate input and output sequences actually can be reconstructed from
this labeled structure graph. The walk corresponding to the messageM1 will uniquely
identify the output vector as vπ = (0, 2, 3, 2, 3, 2) and the input vector uπ = (1, 2, 1, 2, 1)

can be constructed using the relation between input, output and message.

edges, we may loose the order as well as the repetition of the elements. Interestingly,

we see that we can uniquely reconstruct the intermediate sequences from such an edge-

labeled graph by using uniqueness of Mi-walk. More precisely, vπ(r,i) = W(r,i), where

W(r,i) denotes the i-th vertex on the walk Wr.

Let G = (V, E) be a labeled directed graph and f : V → V ′ be an injective function. Let

Ṽ = {v′ ∈ V ′ : ∃v ∈ V, f(v) = v′}. Then, f is a bijection from V to Ṽ . One can define

a labeled directed graph G̃ = (Ṽ, Ẽ) isomorphic to G for which f is an isomorphism.

More precisely, (u, v, a) ∈ E if and only if (f(u), f(v), a) ∈ Ẽ . We call the graph G̃ so

obtained, the f -transformed G, denoted G̃ = α(G).

For a block-vertex structure graph G = (V, E), we define the minimum index mapping

α : V → I0 as αv = α(v) 7→ (r, i) for all v ∈ V , where (r, i) is the minimum index such

that W(r,i) = v. Clearly, α is an injective mapping, with some range set Ṽ .

Definition 3.2.1 (Structure Graph). The structure graph Structπ = (Ṽπ, Ẽπ) associated

to π is the α-transformed BStructπ, i.e. Structπ = α(BStructπ).

0 2

35

(a)

α7−→

(1, 0) (1, 1)

(1, 2)(1, 5)

(b)

1

02

7

4

1

02

7

4

Figure 3.2.2: Structure graph corresponding to a block-vertex structure graph.

Example 3.1. Let M1 = (1, 0, 2, 0, 7) and M2 = (4) be two messages and π(1) = 2; π(2) =

3; π(4) = 5 for some π ∈ Perm. Then, we have vπ(M1) = (0, 2, 3, 2, 3, 5) and vπ(M2) =

(0, 5). The corresponding block-vertex structure graph BStructπ, shown in Figure 3.2.2(a), has

vertex set Vπ = {0, 2, 3, 5} and edge set

Eπ = {(0, 2, 1), (0, 5, 4), (2, 3, 0), (3, 2, 2), (3, 5, 7)}.
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The corresponding structure graph Structπ, illustrated in Figure 3.2.2(b), has vertex set Ṽπ =

{(1, 0), (1, 1), (1, 2), (1, 5)} and edges set

Ẽπ = {((1, 0), (1, 1), 1), ((1, 1), (1, 2), 0), ((1, 2), (1, 1), 2), ((1, 2), (1, 5), 7), ((1, 0), (1, 5), 4)}.

Let W̃r denote the Mr-walk in a structure graph G̃ (corresponding to some block-vertex

structure graph G). It is easy to see that a structure graph is again a union of Mr-walks

W̃r starting from (1, 0). Note that, as per the convention used here and in the preceding

discussion W̃r = α(Wr), where Wr is the corresponding Mr-walk in G. A structure

graph is called a zero-output graph if (1, 0) has positive in-degree, otherwise we call it

non-zero output graph. To express it mathematically, we define a binary function Iszero

such that for each zero-output graph G̃, Iszero(G̃) = 1, otherwise it maps to 0.

To reconstruct a block-vertex structure graph realizing G̃ we have to find labels from

B for all the vertices in a “consistent manner” and we call such a labeling valid. The

mapping must be injective as distinct vertices in a block vertex structure graph map to

distinct vertices in the corresponding structure graph.

Definition 3.2.2 (valid block labeling). An injective function β : Ṽ → B is called a valid

block labeling for a structure graph G̃ = (Ṽ, Ẽ) if the graph G = (V, E) is a block-vertex

structure graph where

1. V := β(Ṽ) = {βv := β(v) : v ∈ Ṽ}, and

2. E is the edge set after relabeling v by βv, i.e. E = {(βu, βv, x) : (u, v, x) ∈ E}.

NECESSARY CONDITIONS FOR A VALID BLOCK LABELING: Not all injective functions

from Ṽ to B are valid block labeling. An obvious class of counter-example functions

are those which map (1, 0) ∈ Ṽ to a non-zero value in B. We now enumerate other

necessary conditions for valid block labeling. First of all, by definition, βi should all

be distinct as the valid block label is injective. In addition to this, whenever e1 :=

(u,w, a), e2 := (v, w, b) ∈ Ẽ we must have βu ⊕ a = βv ⊕ b as these are equal to π−1(z)

for some π ∈ Perm.

An input-collision or simply a collision in a structure graph G̃ is defined by such a triple

δ = (u, v;w). The set {u, v} is called the source of the collision whereas w is called the

head of the collision. We also say the edges e1 and e2 are colliding edges. Thus, an input-

collision δ = (u, v;w) induces a linear restriction Lδ : βu⊕βv = cδ where cδ = a⊕ b ∈ B.

A valid block label must satisfy such linear restrictions for all collisions δ. Let ∆(G̃)

denote the set of all collisions in G̃. Let rank(G̃) denote the rank of the system of linear

equations {Lδ : δ ∈ ∆(G̃)}.
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Now, we define an important parameter, called accident, useful in characterizing struc-

ture graphs. It is defined depending on whether the graph is zero-output graph or

not.

Definition 3.2.3 (Accident of a structure graph). The (number of) accident of a structure

graph G̃ is defined as, Acc(G̃) := rank(G̃) + Iszero(G̃).

Thus, the accident of a non-zero structure graph G̃ is simply rank(G̃), whereas the acci-

dent of a zero-output graph is rank(G̃) + 1.

Lemma 3.2.4. If there is a vertex v with in-degree d then Acc(G̃) ≥ d − 1. Moreover, if the

graph is a zero-output graph then Acc(G̃) ≥ d.

Proof. Let u1, . . . , ud be all the predecessors of v. Let us define an input-collision δi,j :=

(ui, uj ; v) (ignoring the edge labels). It is now easy to see that Lδi,j = Lδ1,i ⊕Lδ1,j for all

i, j ∈ [d]\{1}. Moreover, the Lδ1,i ’s are linearly independent. This, immediately proves

the first part. The second part is just an extension of the first part using the definition

of accident.

Remark 3.2.5. Another simple but useful observation is as follows: if a structure graph

G̃ has at least two collisions with distinct sources, then rank(G̃) ≥ 2.

Let G̃ = (Ṽ, Ẽ) be a structure graph with rank r and |Ṽ| = s + 1. Then fixing some

s− r choices of βi values will uniquely determine the rest4, and so the number of valid

block labeling is at most (2n)s−r. Any valid choice of β induces a block-vertex structure

graph S = (V, E) such that G̃ = S̃ = α(S). Note that, s + Iszero(S) is the number of

vertices v ∈ V with positive in-degree. So exactly (2n− s− Iszero(S))! permutations can

result in the block-vertex structure graph S. Therefore,

Pr
[
BStructΠ = S

]
=

(2n − (s+ Iszero(S)))!

2n!
=

1

(2n)s+Iszero(S)
,

whence, we get

Pr
[
StructΠ = G̃

]
=
∑
S:S̃=G̃

Pr
[
BStructΠ = S

]
1
=
∑
S:S̃=G̃

1

(2n)s+Iszero(S)

2
≤ (2n)s−r

(2n)s+a−r
. (3.12)

4After assigning values for any s − r variables, the system of linear equations will have a unique
solution.
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In 1 the sum is taken over all block-vertex structure graphs S such that the induced

structure graph S̃ = G̃. From 1 to 2, there are at most (2n)s−r choices for S, and for

each such choice Iszero(S) is equal to a − r (i.e. Iszero is invariant for fixed G̃), where a

denotes the accident of G̃.

The following result bounds the probability of realizing a structure graph with accident

a for the tuple of messages M q. The proof is just an extension of Eq. (3.12) using the

condition that s < m.

Lemma 3.2.6. For any structure graph G̃ with accident a, we have

Pr
Π

[
StructΠ = G̃

]
≤ 1

(2n −m)a
.

Now we state another important result which bounds the number of structure graphs

with accident a. We skip the proof of this result as it is readily available in [19, 163].

Lemma 3.2.7. The number of structures graphs associated to M q = (M1, . . . ,Mq) with ac-

cident a is at most
(
m
2

)a. In particular, there exists exactly one structure graph with accident

0.

Corollary 3.2.8. For a ∈ N and m < 2n−1, we have

Pr
Π

[
Acc(StructΠ) ≥ a

]
≤
(
m2

2n

)a
.

Proof. The result follows from straightforward algebraic simplification after applying

Lemma 3.2.6 and Lemma 3.2.7.

3.2.3 True Collision and an Observation on [19, Lemma 10]

Let G̃ be a structure graph and W̃i the Mi-walk. Suppose we reconstruct the graph G̃
again by traversing all the walks W̃i for i ∈ [q] in ascending order. While we walk along

W̃i for all i we count how many times we reach an existing vertex, which increases its

current in-degree. The total count is defined to be the number of true collisions of the

graph.

Mathematically, one can define it as follows: For a vertex v ∈ Ṽ \ {(1, 0)}, we define the

number of true collisions at v by TC(v) := degin(v) − 1 and TC(1, 0) = |degin(1, 0)|,
where degin(u) denotes the in-degree of u (for details see section A.1.1 of appendix A).

The (number of) true collisions of G̃ is the sum TC(G̃) :=
∑

v∈Ṽ TC(v). By lemma 3.2.4,

we know that Acc(G̃) ≥ TC(v) for all v ∈ Ṽ . From the definition of the accident it is also

obvious that Acc(G̃) ≤ TC(G̃).
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LEMMA 10 OF [19]: Like [19, 163], we will predominantly work with accident 1 struc-

ture graphs. To identify all structure graphs with accident 1 it would be good if we can

have some relationship between true collisions and accidents. Lemma 10 of [19] was

meant for this. It says that when q = 2, Acc(G̃) = 1 ⇒ TC(G̃) = 1. We show that this

lemma is not true, via two counter-examples described below.

1. For the first example, illustrated in Figure 3.2.3(a), let

M1 = (M(1,1),M(1,2),M(1,3),M(1,2),M(1,4)) and M2 = (M(2,1))

be two messages such that M(2,1) := M(1,1) ⊕M(1,3) ⊕M(1,4). Here, we have two

input-collisions δ1 := ((1, 0), (1, 2); (1, 1)) and δ2 := ((1, 0), (1, 2); (1, 5)). The two

linear equations Lδ1 and Lδ2 corresponding to the two input-collisions are same

as β(1,0) ⊕ β(1,2) = M(1,1) ⊕M(1,3) and so the rank (which is also the accident in

this case) is 1. However, true collision is two (at (1, 1) and (1, 5)). This contradicts

[19, Lemma 10].

2. For the second example, illustrated in Figure 3.2.3(b), let

M1 = (M(1,1),M(1,2),M(1,3)) and M2 = (M(2,1))

be two messages such that M(2,1) := M(1,1) ⊕M(1,2) ⊕M(1,3). Here, we have two

input-collisions δ1 := ((1, 0), (1, 1); (1, 1)) and δ2 := ((1, 0), (1, 1); (1, 3)). The two

linear equations Lδ1 and Lδ2 corresponding to the two input-collisions are same

as β(1,0) ⊕ β(1,1) = M(1,1) ⊕M(1,2) and so the rank and accident is 1. Again, this

contradicts [19, Lemma 10].

(1, 0)

(1, 1) (1, 2)

(1, 5) (1, 0)

(1, 1)

(1, 3)

(a) (b)

M(1,1)

M(1,2)

M(1,3)

M(1,4)

M(2,1)

M(1,1)

M(1,2)

M(1,3)

M(2,1)

Figure 3.2.3: Two examples of structure graphs with accident 1 and true collision 2.

This lemma was a crucial step in characterizing all accident 1 structure graphs in [19,

163]. As this is shown to be wrong, it is important to revisit and rectify the results in

[19, 163] as much as possible.
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3.3 Characterization of Accident-1 Structure Graphs

In this section, we characterize all structure graphs with accident 0 or 1. To do so we

characterize single message structure graphs which is much easier. Later in the section,

we characterize all structure graphs for a pair of messages satisfying some event. From

here onwards, we will not deal with block-vertex structure graph. So, for simplicity we

use G (instead of G̃) to represent a structure graph and Wr (instead of W̃r) to represent

the Mr-walk in the structure graph.

Let Struct(M q) denote the set of all structure graphs for the tuple of messages M q.

Let Structa(M
q) = {G ∈ Struct(M q) : Acc(G) = a}, the set of all structure graphs

associated to M q with accident a. As before, we will drop the parameter M q, whenever

it is clear from the context. We are interested in Struct0(M q) and Struct1(M q), the sets

of all structure graphs with accident 0 and 1, respectively. Lemma 3.2.7 says that the

number of graphs with accident 1 is at most
(
m
2

)
, where m =

∑
imi and Mi ∈ Bmi . The

number of structure graphs with accident 0 is at most one. In the following we actually

identify this structure graph.

FREE GRAPH: As there is no accident every non-zero vertex has in-degree 1 and (1, 0)

has in-degree 0 (i.e., non-zero output graph). Being a structure graph, G is union of

Mi-walks Wi. An Mi-walk starting from (1, 0) with no vertex having in-degree 2 must

be a path. So G is a union ofMi-pathsWi. Now, for any i 6= j, let p = lcp(Mi,Mj). Then,

W
[p]
i = W

[p]
j , where W [p]

i denotes the sub-walk of Wi consisting of the first p vertices,

and W(i,p+1) 6= W(j,p+1) (if these are defined). It is also easy to see that W [p]
i , W [p+1...mi]

i ,

and W
[p+1...mj ]
j are disjoint paths. Thus, any two paths Wi and Wj are identical up

to the length of the largest common prefix of Mi and Mj and afterwards they remain

disjoint. We call this unique graph the free graph ofM q. A free graph for three messages

is illustrated in Figure 3.3.1.

W(1,0)

W(1,i) W(1,j)

W(1,m1)

W(2,m2)

W(3,m3)

Figure 3.3.1: A free graph of three messages. The dashed, solid and dotted lines denote
the three walks corresponding to the three messages.
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3.3.1 Accident-one Structure Graphs for a Single Message

Now, we consider accident 1 structure graphs for a single message M ∈ Bm. Note that,

any such structure graph must be a walk W of length m.

In this subsection, we exclusively work with single message, hence the index set I =

{(1, i) : i ∈ (m]} is uniquely identified by the set (m]. So, we skip the first coordinate in

this subsection. We say a node Wi is fresh in the walk if Wi 6= Wj for all j 6= i.

3.3.1.1 Case A: Zero-output Graphs

As 0 (this denotes (1, 0)) has positive in-degree there cannot be any more collision pairs

otherwise the accident would be at least two. Let c be the minimum positive integer

such that Wc = 0, so we have a cycle (W0,W1, . . . ,Wc). Let A be its label. Suppose

M = Ai‖B, where i is the maximum positive integer for which we can write M in this

form. So A is not a prefix of B. Let s = lcp(A,B). Thus, Wic+j = Wj for all j ∈ (s].

1. If B is a prefix of A then the structure graph is a cycle of size c ending at Ws. It is

illustrated in Figure 3.3.2(a) (the ∗ is empty).

2. IfB is not a prefix ofA thenWic+s = Ws andWic+s+1 6= Ws+1. Further,Wic+s+1 6=
Wj for all j ∈ [c] since otherwise we get a collision. In fact, it can be shown that all

subsequent nodes are fresh. Suppose not, then let j > ic + s + 1 be the first such

integer for which Wj = Wk for some k < j, hence we obtain a collision. So, the

structure graph is an edge disjoint union of a cycle of size c and a path starting

from s, as illustrated in Figure 3.3.2(a) (the ∗ is non-empty). The length of the

cycle is c, whereas the length of the path is m − ic − s. We also call this graph ρ′

graph. The tail (path from 0 to the cycle) of the ρ′ walk is empty.

3.3.1.2 Case B: Non-zero Output Graphs

As 0 has in-degree 0, there is a collision δ = (u0, v0;w). In fact, all other collisions must

have same source as that of δ (otherwise the number of accidents increases).

Let (i0, j0) be the smallest positive distinct integers such that Wi0 = Wj0 .5 As 0 has

in-degree 0 so 1 ≤ i0 < j0, Wi0−1 = u0, and Wj0−1 = v0. Let A and B be the labels of

W (i0], and W [i0...j0], respectively, and j0 − i0 = c. Then, A‖B is a prefix of M . Let t be

the largest positive integer such that M = A‖Bt‖C. So, B is not a prefix of C. If C is a

5i0 and j0 can be fixed one by one. First fix i0 to be the smallest positive integer such that Wi0 = Wj ,
for some j ∈ [i0 + 1 . . .m]. Now, fix the smallest positive integer j0 such that Wj0 = Wi0 .
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prefix of B then we can have structure graphs as illustrated in Figure 3.3.2(d) or 3.3.2(f)

(the end point lies inside the cycle). Suppose C is not a prefix and let s = lcp(B;C).

Claim 3.3.1. The sub-walk left after traversing W till A‖Bt‖C [s] is a path and disjoint from

the rest (illustrated in Figure 3.3.2(c)).

Proof. Suppose ∃v 6= Wi0+tc+s ∈ W [i0+tc+s...m] ∩ W [i0+tc+s]. Let r = i0 + tc + s. We

distinguish the following two cases:

Case B.1 — Wr+1 ∈W [r]: If s 6= c−1, then we have a new collision δ′ = (Wi−1,Wr;Wi)

independent of δ which increases the accident to 2. If s = c− 1, then i 6= i0 + kc for all

k ∈ (t]. This can be argued as βi0−1⊕Ai0 = βj0−1⊕Bc = βj0−1⊕Bs+1 6= βj0−1⊕Cs+1 (as

Bs+1 6= Cs+1). Now, the only way to make δ′ dependent on δ is to have Wi−1 = Wi0−1.

This implies a collision atWj where j ∈ [i0−1], as the walk must come back toWi0−1 at

the (i−1)-th step. This again gives a new accident as the source of collision is different.

Case B.2 — Wr+1 /∈W [r] and Wj = Wi for some i ∈ [r] and j ∈ [r + 2 . . .m]: This gives

a new collision δ′ = (Wj−1,Wi−1;Wi) which is independent of δ, whence it increases

the accident.

Hence, both case B.1 and B.2 lead to contradiction. Thus, we haveW [r+1...m]∩W (r] = ∅.
Suppose W [r...m] is not a path. Therefore, ∃i, j ∈ [r . . .m] such that (Wi,Wj ;Wi+1) is a

collision. Clearly, this collision is independent from δ (as W [r+1...m] ∩W (r] = ∅), and

hence gives a new accident.

Observe that s = c− 1 is a special case. In addition to this condition, suppose we have

an edge e := (Wi0−1,Wr+1). This creates a collision δ′ = (Wi0−1,Wr;Wr+1) which is

dependent on δ. Obviously, the edge e cannot occur in graph associated to a single

message, as that will imply degin(Wj) ≥ 2 for some j ∈ [0..i0 − 1] which gives a new

accident. But for two messages this is realizable, as exploited in the counter-examples

given in Figure 3.2.3. We illustrate the structure graphs corresponding to this special

case in Figure 3.3.2(b) and 3.3.2(e).

We summarize the above discussion in the following lemma.

Lemma 3.3.2. For m ≥ 1,M ∈ Bm, the graphs in figure 3.3.2 exhaust all possible forms for

any G ∈ Struct1(M).
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s

0

(a)

0 i0 − 1 i0

j0 − 1(r + 1)
(b)

0 i0 − 1 i0

j0 − 1

i0 + s

(c)

0 i0 − 1 i0

i0 + sj0 − 1

(d)

0 i0 − 1

j0 − 1

(r + 1)
(e)

0 i0 − 1

i0

(f)

Figure 3.3.2: Characterizing all accident-one structure graphs realizable by a single
message. The dashed lines in these illustrations represent optional subwalks. The

vertex Wi is represented by i, for notational simplicity.

3.4 Revisiting outCPany
q,`,σ and fullCPpf

q,`,σ Bounds

In this section, we revise the upper bounds on outCP and fullCP, and consequently the

PRF advantages of CBC-MAC and EMAC as given in [19]. We start off with a discussion

that establishes the role of structure graphs in the PRF security analysis of CBC-MAC

and EMAC. We have already seen that bounding PRF advantages of CBC-MAC and

EMAC is reduced to bounding full collision probability fullCPpf
q,`,σ and collision prob-

ability outCPany
q,`,σ, respectively. So, it would be sufficient to bound these probabilities.

For this we first prove a general claim stated in Proposition 3.4.1.

STRUCTURE GRAPH EVENTS: Let E be an event defined on the intermediate output

sequence vπ(M q) for some permutation π. We say that the event E is defined by a struc-

ture graph if there is an event E′ defined on the structure graph Structπ such that E holds

if and only if E′ holds. We call such an event a structure graph event. Moreover, we say

that E is non-free if it does not hold for free graphs (the structure graph with accident

0). The collision event for distinct messages as well as the full collision event for prefix-

free messages are examples of non-free structure graph events. We write Structa[E] to

denote the set of all structure graphs with a accidents and satisfying a non-free event E.

Proposition 3.4.1. Let E be a non-free structure graph event for the message tuple M q. Then,

Pr
Π

[E] ≤ |Struct1[E]|
2n −m

+
m4

22n
.

Proof. For any structure graph event E,

Pr
Π

[E] =
∑
a≥0

Pr
[
StructΠ ∈ Structa[E]

]
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=
∑

G∈Struct1[E]

Pr
[
StructΠ = G

]
+
∑
a≥2

Pr
[
StructΠ ∈ Structa

]
≤ |Struct1[E]|

2n −m
+
m4

22n
,

where the last inequality follows from Lemma 3.2.6 and Corollary 3.2.8.

3.4.1 Revision of outCPany
q,`,σ Bound

Suppose M1 ∈ Bm1 , M2 ∈ Bm2 , and 0 ≤ m1 ≤ m2. Also, we assume that M(1,m1) 6=
M(2,m2), since otherwise we can remove the largest common suffix which does not

change the collision probability. Note that, the first message M1 can be empty and

in this case the collision event means vΠ
m2

(M2) = 0n. This is a structure graph event

because (1, 0) is a vertex of the structure graph. Due to Proposition 3.4.1, we only

need to bound the number of structure graphs with accident 1 satisfying the Ocoll

event for the pair of messages. More precisely, we have to bound the size of the set

Struct1(M1,M2)[Ocoll].

3.4.1.1 Case A: M1 is Empty

In this case we have

Struct1(M1,M2)[Ocoll] = Struct1(M2)[W(2,m2) = (1, 0)].

We make the following claim, which is essentially [19, Lemma 14] in our notations.

Claim 3.4.2. |Struct1(M2)[W(2,m2) = (1, 0)]| ≤ d(m2), where d denotes the number of divisors

function.

Proof. Let i be the smallest positive integer such thatW(2,i) = 0. LetA be the label of the

cycleW (i]
2 . IfM2 = Ak for some k ∈ N, then Struct1(M2)[W(2,i) = (1, 0)] contains exactly

one structure graph. Note that, k must divide m2 and hence the number of possible

choices of k is at most d(m2), the number of divisors of m2. Suppose M2 = Ak‖B
for some non-empty B where k is the largest such integer. If B is a prefix of A then

W(2,m2) = (1, 0) only if B = A which contradicts the maximality of k. So now assume

that lcp(A,B) = s where s is strictly less than the block length of B. Then, we must

have As+1 6= Bs+1, whence W(2,ki+s+1) 6= W2,s+1. But, W2,m2 = (1, 0), whence the walk

must collide with the cycle W (i]
2 at some point beyond W2,s+1. However, as we have a

zero-output structure graph with accident 1, we can not have any more collisions. Thus

we can have at most d(m2) accident 1 graphs satisfying the event W(2,m2) = (1, 0).
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3.4.1.2 Case B: M1 is Non-empty

In this case, we must have a collision (u := W(1,m1−1), v := W(2,m2−1); z := W(2,m2)),

as the labels of the last edges for walks W1 and W2 are different. Any other collision

must have the same source set {u, v} (otherwise, the number of accidents increases).

Moreover, (1, 0) can not have positive in-degree. Now, we consider different sub-cases:

Case B.1 — Both W1 and W2 are paths: The union of W (m1−1]
1 and W

(m2−1]
2 is a free

graph (as W(1,m1−1) and W(2,m2−1) can not appear before in the graph and so no col-

lision among the path can occur). This gives only one choice of the graph as shown

in the Figure 3.4.1(a). So the number of choices is bounded by at most 1. This is also

proved as a part of [19, Lemma 15].

Case B.2 — W2 is not a path: We have already characterized all possibilities of W2 (in

Figure 3.3.2). There exist some integers t and c such thatW (t]
2 is a path withW(2,t−1) = u

and W(2,t) = w, W [t...t+c]
2 is a cycle of length c such that W(2,t+c−1) = v. Recall that,

W(1,m1−1) = u and W(2,m2−1) = v.

Claim 3.4.3. W (m1−1]
1 = W

(t−1]
2 and so m1 = t.

Proof. Let s be the length of the largest common prefix of M [t−1]
1 and M [t−1]

2 . If s < t− 1

then in the walk W1 there is no way to reach u without coming back to the walkW (t−1]
2 .

Coming back is not possible as it leads to a collision with a different generator set.

Similarly, we can disprove that s = t − 1 and m1 > t. Thus, we have m1 = t and

W
(m1−1]
1 = W

(t−1]
2 .

Now, based on p = lcp(M1,M2), we may have two sub-cases.

Case B.2.(a) — W(1,p) = w: In this case M1 is a prefix of M2, i.e. t = p. The

structure graph corresponding to this is illustrated in Figure 3.4.1(b). The number

of such structure graphs is again at most d(m2−m1) (similar to the previous case

where M1 is the empty message). This is also shown in [19, Lemma 13].

Case B.2.(b) — W1[p] 6= w: This is the missing case in [19]. In this case, W1,p

should be a fresh vertex otherwise we get a collision with different source set.

The structure graph corresponding to this case is shown in Figure 3.4.1(c). Let

M1 = A‖a where A = M
[t−1]
1 and a = M(1,t). Note that, t − 1 = p is the length of

the largest common prefix of M1 and M2. Then,

M2 = A‖b‖(B‖e)c−1‖B‖f, where f = M(2,m2), b = M(2,t), e = a⊕ b⊕ f.
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The choice of B is variable. But, it must satisfy the above restrictions for some

c > 1. In fact, B is uniquely determined by c (as it occurs exactly c many times,

and e and f are fixed). Now, c must divide m2 − m1 and hence the number of

choices of c is at most d(m2 −m1)− 1.

This completes the characterization of all accident-1 structure graphs satisfying Ocoll

event and we get explicit upper bounds on the number of such graphs for all cases.

Note that, cases B.2.(a) and B.2.(b) cannot hold simultaneously. But, Cases B.2.(b) and

B.1 can hold simultaneously, which makes the total count of these two cases at most

d(m2 −m1). Since the ordering of messages does not matter in Ocoll we are done.

Lemma 3.4.4. For m1 ≤ m2 ∈ N, M1 ∈ Bm1 , M2 ∈ Bm2 , and M1 6= M2, we have

1. If lcp(M1,M2) = m1, then any G ∈ Struct1(M1,M2)[Ocoll] is of the form illustrated

in Figure 3.4.1(b) and the number of such graphs is at most d′(m2) (taking the maximum

over all possible d(·) values).

2. If lcp(M1,M2) = m1 − 1, then any G ∈ Struct1(M1,M2)[Ocoll] is of the form illus-

trated in Figure 3.4.1(c) and the number of such graphs is at most d′(m2) (taking the

maximum over all possible d(·) values).

3. In all other cases, any G ∈ Struct1(M1,M2)[Ocoll] is of the form illustrated in Figure

3.4.1(a) and the number of such graphs is at most 1.

0
p

z

(a)

0
p = z

(b)

0 p = u w

vz

(c)

Figure 3.4.1: Characterizing all accident-one structure graphs realizable by two mes-
sages which satisfy the Ocoll event. Dashed lines represent W1 and solid lines repre-

sent W2, and ∗ denote some arbitrary string.

Lemma 3.4.4 and Proposition 3.4.1 straightaway bound outCP(Mi,Mj) ≤ d′(`)/2n +

(mi + mj)
4/22n for any i < j ∈ [q]. Further, there exist a message tuple M q such that

outCPany
q,`,σ ≤

∑
i<j∈[q] outCP(Mi,Mj), which gives

Corollary 3.4.5. outCPany
q,`,σ ≤

q2d′(`)

2n
+

8σq`3

22n
.

Corollary 3.4.5 in combination with Eq. (3.3) and (3.5) gives the revised PRF security

advantage for EMAC,

Advprf
EMACE,E

(q, `, σ, t) ≤ 2Advprp
E (σ, t) +

q2d′(`)

2n
+

8σq`3

22n
. (3.13)
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3.4.2 Revision of fullCPpf
q,`,σ Bound

Since Fcoll is a non-free structure graph event, we have, using Proposition 3.4.1,

fullCP(M1,M2) ≤ |Struct1(M1,M2)[Fcoll]|
2n −m1 −m2

+
(m1 +m2)4

22n
, (3.14)

where M1 and M2 satisfy the pf (prefix-free) constraint. Thus, it would be again suf-

ficient to bound the number of structure graphs for two messages with accident 1

which satisfy full collision event. Bellare et al. [19] proved that |Struct1[Fcoll]| ≤
4 max{m1,m2}. While bounding the |Struct1[Fcoll]|, they proved a strong result [19,

Lemma 19] that will be useful in our analysis also. We reproduce it here in our nota-

tions.

Lemma 3.4.6. For b ∈ {1, 2} and any i ∈ (mb], we have

|Struct1(M1,M2)[W(b,i) ∈W
(i−1]∪[i+1...mb]
b ]| ≤ mb.

We skip the proof of lemma 3.4.6 as it is available in [19]. We revise the upper bound

on |Struct1(M1,M2)[Fcoll]| to 3(m1 +m2), and consequently the new bound on fullCP

is as follows

Lemma 3.4.7. fullCP(M1,M2) ≤ 3(m1+m2)
2n−m1−m2

+ (m1+m2)4

22n
.

Proof. We need to bound the number of structure graphs for a pair of prefix-free mes-

sages M1 ∈ Bm1 and M2 ∈ Bm2 which satisfy the Fcoll event and have at most ac-

cident 1. Note that, the event implies that the structure graphs must have at least ac-

cident 1 as the messages are prefix-free. The event Fcoll can be written as W(2,m2) ∈
W

(m2−1]
2 ∪W [m1]

1 .

3.4.2.1 Case A: W(2,m2) ∈W
(m2−1]
2

This case can be bounded to at most m2, by direct application of Lemma 3.4.6.

3.4.2.2 Case B: W(2,m2) ∈W
[m1]
1

Suppose Fcoll(M1,M2) happens due to W(2,m2) = W(1,r) for an arbitrary r ∈ [m1 − 1].

Then Fcoll(M1,M2) is equivalent to Ocoll(M
[r]
1 ,M2). Let s := lcs(M

[r]
1 ;M2). Then

M(1,r−s) 6= M(2,m2−s). Let N1 = M
[r−s]
1 and N2 = M

[m2−s]
2 . From lemma 3.4.4, we know
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that G̃ ∈ Struct1(N1, N2)[Ocoll] must be one of (a), (b) or (c) in Figure 3.4.1. Keep in

mind that G̃ is a subgraph of some G ∈ Struct1(M1,M2)[Fcoll].

Case B.1 — G̃ is of the form Figure 3.4.1(a): In this case W̃1 and W̃2 are paths. For a

fixed r the only possible collision is at (W̃(1,r−s−1), W̃(2,m2−s−1); W̃(1,r−s)), and hence

the number of such graphs is at most 1. There are at most m1 possible values for r. So,

the number of choices for G ∈ Struct1(M1,M2)[Fcoll] is at most m1.

Case B.2 — G̃ is not of the form Figure 3.4.1(a): In this case, at least one of W̃1 or W̃2 is

not a path. Without loss of generality, assume W̃1 is not a path. Let p̃ = lcp(N1, N2). We

know that N1 and N2 are prefixes of M1 and M2, respectively. Thus M [p̃]
1 = M

[p̃]
2 . Now,

we must have a collision (u, v;w) in W̃1. From Lemma 3.4.4, we know that the graph

can be either (b) or (c) in Figure 3.4.1 depending on whetherw = W̃(1,p̃) orw = W̃(1,p̃+1).

Next, we make two claims which will enable us to bound these two cases. The proofs

for these two claims are given later in the section.

Claim 3.4.8. If G̃ is of the form Figure 3.4.1(b), then W(1,lcp(M1,M2)) is not fresh in W1.

Claim 3.4.9. If G̃ is of the form Figure 3.4.1(c), then W(1,lcp(M1,M2)+1) is not fresh in W1.

Recall that in a walk W a vertex Wi is not fresh if ∃j 6= i such that Wj = Wi. By Claim

3.4.8, we know that W(1,lcp(M1,M2)) is not fresh when G̃ is as in Figure 3.4.1(b). Similarly,

by Claim 3.4.9, we know thatW(1,lcp(M1,M2)+1) is not fresh when G̃ is as in Figure 3.4.1(c).

So using Lemma 3.4.6, we bound the number of such graphs G to at most 2m1 (at most

m1 graphs for each of the two cases) when W̃1 is not a path. Similarly we have at most

2m2 choices when W̃2 is not a path. Therefore the total number of choices in case B.2

is at most 2(m1 + m2). Combining cases A, B.1 and B.2 we have at most 3(m1 + m2)

choices. The result follows.

3.4.2.3 Proof of Claim 3.4.8

If G̃ is like Figure 3.4.1(b), we must have w = W̃(1,p̃). Let p be the smallest integer such

that W̃(1,p) = W̃(1,p̃). Let P and Q be the labels of W̃ (p̃]
1 and W̃

[p̃...p]
1 , respectively, and

c = p − p̃. Then, N1 = P‖Qi and N2 = P for some i > 0. As N1 and N2 are formed by

removing the largest common suffix from ofM [r]
1 andM2, respectively, thereforeM [r]

1 =

P‖Qi′‖R and M2 = P‖Qj‖R, where i′ ≥ i and j ≥ 0 are the largest such integers. Since

M
[r]
1 and M2 are prefix-free, we must have i′ > j. Now, M1 = M

[r]
1 ‖S = P‖Qi′‖R‖S,

where |S| ≥ 0. From now on, we will work on the walk W1 of graph G (instead of W̃1

which is a subwalk of W1) corresponding to M1. If R is a prefix of Q then M2 must

be a prefix of M1, which contradicts the prefix-free constraint. So R is not a prefix of

Q. If Q is a prefix of R then it contradicts the maximality of i′ and j. So Q is not a
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prefix of R. Let s = lcp(Q,R). Then, Qs+1 6= Rs+1. Thus, M [p̃+jc+s]
1 = M

[p̃+jc+s]
2 and

M(1,p̃+jc+s+1) 6= M(2,p̃+jc+s+1). So, lcp(M1,M2) = p̃ + jc + s. Further, since j < i′,

we must have W(1,p̃+i′c+s) = W(1,p̃+jc+s). Thus, W(1,lcp(M1,M2)) is not fresh. Since, we

started off with an arbitrary r, we conclude that W(1,lcp(M1,M2)) is not fresh whenever G̃
is of the form Figure 3.4.1(b).

3.4.2.4 Proof for Claim 3.4.9

If G̃ is like Figure 3.4.1(c), we must have w = W̃1[p̃+ 1]. As noted earlier, in the revision

of the outCP bound, this case was missing in the proof in [19]. Using a similar line

of argument as in the proof of Claim 3.4.8, we can conclude that irrespective of the

value of r, the cycle goes through W(1,lcp(M1,M2)+1) twice. Thus, W(1,lcp(M1,M2)+1) is not

fresh.

Note that, our approach in Case B.2 above is a bit subtle. We used lemma 3.4.4 to iden-

tify a fundamental property (cycle goes through either lcp(M1,M2) or lcp(M1,M2) + 1

twice), and then exploited this property to bound the counting. A straightforward ap-

proach of summing the number of graphs in Figure 3.4.1(b) and 3.4.1(c) over all values

of r will give a worse bound of mbd
′(mb) for b ∈ {1, 2}. To get a tighter bound of mb we

needed this subtlety. Now, we extend the bound for fullCPpf(M1,M2) to fullCPpf
q,`,σ, in

order to get the revised PRF bound for CBC-MAC.

fullCPpf
q,`,σ ≤

∑
i 6=j∈[q]

fullCPpf(Mi;Mj)

≤
∑

i 6=j∈[q]

(
3(mi +mj)

2n −m1 −m2
+

(mi +mj)
4

22n

)

≤
∑

i 6=j∈[q]

(
6(mi +mj)

2n
+

(mi +mj)
4

22n

)

≤ 6σq

2n
+

8σq`3

22n
(3.15)

Here we have computed the bound in terms of q, ` and σ. Another approach (as used

in [19]) is to bound the value using q and ` only, in which case the bound will be

fullCPpf
q,`,σ ≤

12q2`

2n
+

16q2`4

22n

Using Proposition 3.1.2, and Eq. 3.2 and 3.15, we get the following result.
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Theorem 3.4.10. For prefix-free messages, we have

Advprf
CBC-MACE

(q, `, σ, t) ≤ Advprp
E (σ, t) +

8σq

2n
+

8σq`3

22n
+

q2

2n+1
. (3.16)

This gives a bound of O(σq2n ) for ` < 2n/3. As noted earlier, this is a better bound

whenever the average message length is much smaller than the length of the longest

message.

3.5 Revised Security Analysis of EMAC

In this section, we revisit the improved PRF analysis of EMAC due to Pietrzak [163]. We

first identify and rectify the flaw in the proof and obtain a degraded security bounds.

Later, we obtain a better bound (in terms of `) using a much simpler proof.

3.5.1 Flaw and Revision of PRF Advantage of EMAC [163]

For brevity, in this section we will use asymptotic bounds and avoid exact constant

factors. The proposed bound for EMACΠ1,Π2 as stated in [163] is

Advprf
EMACΠ1,Π2

(q, `, σ) = O

(
q2

2n

(
1 +

`8

2n

))
,

provided `2 ≤ q. Thus, the bound becomes O(q2/2n) when ` ≤ min{q1/2, 2n/8}.

PIETRZAK’S APPROACH: To show the above result, we need to bound the collision

probability outCPq,`. One possible approach is to group the q message into O(q/`2)

sets, each set consisting of about `2 messages. Now, the collision event for q messages

implies that a collision occurred in the union of two sets. Since, Ocoll is a non-free

event, Proposition 3.4.1 gives

outCPk,` = O

(
|Struct1(Mk)[Ocoll]|

2n

)
+O

(
k4`4

22n

)
,

for some k ≤ q. Applying this with k = `2 (i.e. messages within two sets), we have

outCPq,` = O

(
q2

`4

)
× outCP2`2,` = O

(
q2N

`42n

)
+O

(
q2`8

22n

)
where N denotes the number of accident-one structure graphs satisfying Ocoll for `2

messages with maximum length `. The O(q2/`4) term is due to the number of ways in
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which we can choose two sets. In [163, Lemma 4], Pietrzak claimed that N = O(`4).

More precisely, he showed that

N = `4 max
lcp(M1,M2)<m1

|Struct1(M,M ′)[Ocoll]|+ `4. (3.17)

where the maximum is taken over all (M1,M2) such that m1 < m2. To get a bound in

O(`4) Pietrzak made the following claim.

Claim 1 of [163]: If lcp(M1,M2) 6= m1, then |Struct1(M1,M2)[Ocoll]| = 1.

If this claim happens to be true then N = O(`4). However, we have seen before

that there exists M1, M2 such that lcp(M1,M2) = m1 − 1 (see Figure 3.4.1(c)) and

|Struct1(M,M ′)[Ocoll]| = d′(`). Thus,

max
lcp(M1,M2)<m1

|Struct1(M,M ′)[Ocoll]| = O(d′(`)).

If we plug in this, the modified bound is N = O(`4(d′(`))), whence the correct bound

for collision probability becomes O(q2d′(`)/2n) which is not better than the bound in

[19]. In fact, this is worse as the maximum length is restricted to 2n/8 as compared to a

more relaxed bound of 2n/3 in [19].

3.5.2 Simple Proof of PRF Security for EMAC

We have seen in the last subsection that the influence of the flaw from [19, Lemma 10]

is more serious in context of the tight bound analysis of EMAC given in [163]. One

possible approach to fix the proof of [163], is by bounding N in a different way. For

example, we can consider two cases: lcp(M1,M2) = m1, and lcp(M1,M2) = m1 − 1.

For other pairs of messages which do not satisfy any of the two cases, the number

of structure graphs can be shown to be one. However, we have to show that the the

number of graphs is still at most `4 (see the second term of Eq. (3.17)).

We take a different and simpler approach. Instead of grouping the messages, we di-

rectly bound the number of structure graphs for a slightly different choices of permu-

tations. We will ignore all those permutations (i.e. bad permutations) which induces

one of the following:

1. For some pair of messages Mi and Mj the number of accident is two or more.

2. For some message Mi, the accident is one.
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Let G be a structure graph associated to a q-tuple of messages. Recall that G is a union

of q walks Wi. We write Gi and Gi,j to represent Wi and Wi ∪Wj . Note that, these are

again structure graphs associated to Mi and (Mi,Mj) respectively. In this notation, all

structure graphs generated by a good permutation must have two properties: for any

i 6= j ∈ [q], Acc(Gi) = 0 and Acc(Gi,j) ≤ 1. We write Bad to denote the event that the

structure graph is bad.

Lemma 3.5.1. For any q-tuple of messages M q and ` < 2n−2, we have

outCPq,`(M
q) ≤ q2

2n
+
q`2

2n
+

8q2`4

22n
.

PROOF OVERVIEW — We want to bound the probability of realizing a structure graph

for a pair of messages that satisfies Ocoll. The main idea is to simplify the analysis

by handling graphs in Struct(M q)[Bad] separately. Lets characterize the nature of any

structure graph for a pair of messages that satisfies ¬Bad ∧ Ocoll. The number of ac-

cidents in the graph is at most 1, the individual walks corresponding to each message

must be paths, and the two paths must share common first and last vertices. Now,

the number of such graphs can be at most 1 (see Figure 3.4.1), leading to a probability

bound of q2/2n (due to O(q2) pairs of messages).

Proof. We first bound the probability that StructΠ(M q) ∈ Struct(M q)[Bad]. For a bad

graph (1) there exists i and j such that the accident for the pair of message Mi and

Mj is at least 2, or (2) there exists i, such that the accident for Mi is at least one.

The first event can happen with probability 8q2`4/22n using Corollary 3.2.8. Simi-

larly, the second event can happen with q`2/2n. Now, we bound the probability that

StructΠ(M q) ∈ Struct(M q)[Ocoll ∧ ¬Bad]. Note that, the collision event implies that

there exists i and j such that collision event holds for the message Mi and Mj . Now

¬Bad implies that accident of Gi,j is one whereas accident of Gi and Gj are zero. In sec-

tion 3.3, we have characterized all structure graphs for a pair of messages with accident

one satisfying collision. Among all possibilities only one structure graph satisfies ¬Bad.

Hence, there is exactly one structure graph. This implies that

Pr
[
StructΠ(Mi,Mj) ∈ Struct(Mi,Mj)[Ocoll ∧ ¬Bad]

]
≤ 2

2n
,

where we use the assumption that mi +mj ≤ 2` < 2n−1. By summing over all possible

i and j, we have

Pr
[
StructΠ(M q) ∈ Struct(M q)[Ocoll ∧ ¬Bad]

]
≤ q2

2n
.
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Now, we summarize the above discussion as follows

outCPq,`(M
q) ≤ Pr

[
StructΠ(M q) ∈ Struct(M q)[Ocoll ∧ ¬Bad]

]
+ Pr

[
StructΠ(M q) ∈ StructΠ(M q)[Ocoll ∧ Bad]

]
≤
∑
i<j

2|Struct(Mi,Mj)[Ocoll ∧ ¬Bad]|
2n

+
q`2

2n
+

8q2`4

22n

≤ q2

2n
+
q`2

2n
+

8q2`4

22n
. (3.18)

This completes the proof.

Using Eq. (3.3) and (3.5), and Lemma 3.5.1, we get the following result on the PRF

security of EMAC.

Theorem 3.5.2. For ` < 2n−2, we have

Advprf
EMACE,E

(q, `, σ, t) ≤ 2Advprp
E (σ, t) +

1.5q2

2n
+
q`2

2n
+

8q2`4

22n
.

Thus, for ` ≤ min{q1/2, 2n/4}, we have

Advprf
EMACE,E

(q, `, σ, t) ≤ 2Advprp
E (σ, t) +O

(
q2

2n

)
.

Clearly, our result is a marked improvement over both [19] and [163]. The result in

Theorem 3.5.2 is tight for ` ≤ min{q1/2, 2n/4}, as one can obtain collisions in the output

of EMAC in roughly 2n/2 queries, which leads to a easy length extension distinguishing

event. The condition q > `2 can be dropped if we assume that ` ≤ 2n/4−k for some small

k such that 2−k is negligible. More precisely, if ` ≤ 2n/4−k, then the PRF advantage of

EMAC is O(q2/2n) +O(1/2k).

3.5.3 Implications on the PRF Security of ECBC and FCBC

For any M ∈ {0, 1}η∗ , recall that M = pad(M) = M‖10n|M |n−|M |−1 when n - |M |, and

M = pad(M) = M otherwise. In [34], Black and Rogaway gave three variants for CBC-

MAC, namely ECBC, FCBC, and XCBC, to handle arbitrary message lengths. Here, we

describe ECBC and FCBC.
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1. ECBC, based on a block cipher E instantiated thrice with keys K1,K2,K3 ∈ K, is

defined as,

ECBCEK1
,EK2

,EK3
(M) :=

EK2(CBCEK1
(M)) if |M | = |M |,

EK3(CBCEK1
(M)) otherwise.

2. FCBC, based on a block cipher E instantiated thrice with keys K1,K2,K3 ∈ K, is

defined as,

FCBCEK1
,EK2

,EK3
(M) :=

EK2(CBCEK1
(M

[m−1]
)⊕Mm) if |M | = |M |,

EK3(CBCEK1
(M

[m−1]
)⊕Mm) otherwise,

where m =
⌈
|M |
n

⌉
.

It should be clear that the two keys K2 and K3 are chiefly used to separate the process-

ing of block sequences (key K2 is used for finalization) from non-block sequences (key

K3 is used for finalization). If we instantiate the block cipher E with K3←$K3, then

clearly the finalization of block and non-block sequences is independent from each

other. This observation coupled with the fact that Ocoll implies Icoll gives the fol-

lowing corollary on the security of ECBC and FCBC

Corollary 3.5.3. For ` < 2n−2, we have

1. Advprf
ECBCE,E,E

(q, `, σ, t) ≤ 3Advprp
E (σ, t) +

1.5q2

2n
+
q`2

2n
+

8q2`4

22n
.

2. Advprf
FCBCE,E,E

(q, `, σ, t) ≤ 3Advprp
E (σ, t) +

1.5q2

2n
+
q`2

2n
+

8q2`4

22n
.

The proof is quite straightforward given Theorem 3.5.2 and the above mentioned ob-

servations. We remark that the bounds in Corollary 3.5.3 are significant improvements

over the applicable state-of-the-art bounds in [19, 163].



Chapter 4

Pseudorandom Function based

CBC-MAC Family

In this chapter, we continue our investigations on the security of the CBC-MAC fam-

ily. In all the previous works the underlying primitive of the CBC-MAC family was

assumed to be a block cipher or a keyed family of random permutations. However,

the CBC mode of operation can also be used to construct a MAC when the underlying

primitive is a length-preserving pseudorandom function (PRF) or a keyed family of

length-preserving random functions. In fact, the very first security proof of CBC-MAC

in [15] essentially models the block cipher as a PRF. We believe, when it comes to CBC-

MAC the choice of block ciphers or pseudorandom permutations (PRPs) over PRFs as

the underlying primitive is primarily for historical reasons, i.e. fast, secure, standard-

ized block cipher implementations are readily available compared to pseudorandom

functions.

Given a lack of understanding of the exact security of PRF-based CBC-MAC construc-

tions, the primary goal of this chapter is to understand the gap between PRP vs PRF

instantiation of CBC-MAC and its derivative constructions.

4.1 PRF Analysis of PRF-based CBC-MAC Family

As before, we will be interested in the PRF security of CBC-MAC family. Most of the

notations and terminologies used in this chapter are analogous (replace π ∈ Perm with

γ ∈ Func) to the ones defined in chapter 3. So, sometimes we will directly use these

notations and terminologies without first explicitly defining them.

62
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4.1.1 Function-based CBC-MAC Family

In this chapter, we always use length-preserving functions γ over the set B, i.e., γ ∈
Func(B,B), and hence skip the parametrization in Func. The CBC function with a func-

tion γ ∈ Func, viewed as a key of the construction, is defined analogous to CBCπ of

section 3.1.1. In other words, CBCγ takes as input a message M ∈ Bm with m blocks

and outputs CBCγ(M) := vγm. This is inductively computed as follows: vγ0(M) = 0n,

and for all i ∈ [m], we have

uγi (M) := vγi−1(M)⊕Mi,

vγi (M) := γ(uγi (M)). (4.1)

As before, we call uγ(M) := (uγi (M))i∈[m] and vγ(M) := (vγi (M))i∈(m], the interme-

diate input and intermediate output vectors, respectively, associated to γ and M . The

intermediate input vector uγ(M) is uniquely determined by vγ(M) (and does not de-

pend on the function γ). We can write down this association generically as a func-

tion out2inM : Bm+1 → Bm mapping any block vector ym+1 to another block vector

xm where xi = yi−1 ⊕ Mi for all i ∈ [m]. So for all functions γ ∈ Func, we have

out2inM (vγ(M)) = uγ(M). We drop the superscripts γ and M when they are obvious from

the context.

Given the definition of CBCγ , one can easily define the CBC-MAC family. In the fol-

lowing description, K3 ∈ K3, F ∈ BFunc(K,B,B), L,L′ ∈ B, and M ∈ {0, 1}η∗ with

d|M |/ne = m.

1. CBC-MAC, based on F instantiated with key K1, is defined as,

CBC-MACFK1
(M) := CBCFK1

(M) for all M ∈ Bη
+
.

2. EMAC, based on F instantiated twice with key tuple K [2], is defined as,

EMACFK1
,FK2

(M) := FK2(CBCFK1
(M)) for all M ∈ Bη

+
.

3. ECBC, based on F instantiated thrice with key tuple K [3], is defined as,

ECBCFK1
,FK2

,FK3
(M) :=

FK2(CBCFK1
(M)) if |M | = |M |,

FK3(CBCFK1
(M)) otherwise.
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4. FCBC, based on F instantiated thrice with key tuple K [3], is defined as,

FCBCFK1
,FK2

,FK3
(M) :=

FK2(CBCFK1
(M

[m−1]
)⊕Mm) if |M | = |M |,

FK3(CBCFK1
(M

[m−1]
)⊕Mm) otherwise.

5. XCBC, based on L, L′, and F instantiated with key K1, is defined as,

XCBCL,L′,FK1
(M) :=

FK1(CBCFK1
(M

[m−1]
)⊕Mm ⊕ L) if |M | = |M |,

FK1(CBCFK1
(M

[m−1]
)⊕Mm ⊕ L′) otherwise.

6. TMAC, based on L, and F instantiated with key K1, is defined as,

TMACL,FK1
(M) :=

FK1(CBCFK1
(M

[m−1]
)⊕Mm ⊕ L) if |M | = |M |,

FK1(CBCFK1
(M

[m−1]
)⊕Mm ⊕ µ� L) otherwise,

where µ�L denotes the multiplication of µ ∈ F2n \{0, 1} and L over F2n (viewing

B as F2n).

7. OMAC, based on F instantiated with key K1, is defined as,

OMACFK1
(M) :=

FK1(CBCFK1
(M

[m−1]
)⊕Mm ⊕ FK1(0)) if |M | = |M |,

FK1(CBCFK1
(M

[m−1]
)⊕Mm ⊕ µ� FK1(0)) otherwise,

where µ� FK1(0) is defined as in case of TMAC.

We will mostly focus on EMAC, ECBC, FCBC, XCBC, and TMAC. However, our attack,

given in Lemma 4.1.3, also works for OMAC and CBC-MAC with fixed length messages.

First, we replace the multiple instantiations of F with independent and uniform ran-

dom functions Γ1, Γ2, Γ3←$ Func. This incurs a cost of Advprf
F (σ, t), 2Advprf

F (σ, t), and

3Advprf
F (σ, t) in case of XCBCL,L′,FK1

and TMACL,FK1
, EMACFK1,K2

, and ECBCK1,K2,K3

and FCBCK1,K2,K3 , respectively. Formally, we have

Advprf
EMACF,F

(q, `, σ, t) ≤ 2Advprf
F (σ, t) + Advprf

EMACΓ1,Γ2
(q, `, σ) (4.2)

Advprf
ECBCF,F,F

(q, `, σ, t) ≤ 3Advprf
F (σ, t) + Advprf

ECBCΓ1,Γ2,Γ3
(q, `, σ) (4.3)

Advprf
FCBCF,F,F

(q, `, σ, t) ≤ 3Advprf
F (σ, t) + Advprf

FCBCΓ1,Γ2,Γ3
(q, `, σ) (4.4)

Advprf
XCBCL,L′,F

(q, `, σ, t) ≤ Advprf
F (σ, t) + Advprf

XCBCL,L′,Γ1
(q, `, σ) (4.5)

Advprf
TMACL,F

(q, `, σ, t) ≤ Advprf
F (σ, t) + Advprf

TMACL,Γ1
(q, `, σ) (4.6)
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4.1.2 PRF Analysis of CBC-MAC Variants

In general, the PRF analysis of CBC-MAC variants can be reduced to the analysis of

some collision events on the underlying CBC function. This has been the common

technique for the PRF analysis of PRP instantiated CBC-MAC variants. We will follow

the same technique here and establish a relationship between the PRF advantage of

CBC-MAC variants and the collision probability of CBC function. Basically, we show

that the PRF advantage of M+ ∈ {EMAC,ECBC,FCBC,XCBC,TMAC} is asymptoti-

cally tight in the collision probability of the underlying CBC function. First, we develop

some new terminologies to aid our discussions in rest of the chapter. Following that we

build the core results of this chapter in shape of Lemma 4.1.1, 4.1.3, Theorem 4.1.4, 4.1.5

and 4.1.6.

Let M1 and M2 be two distinct tuple of blocks with block lengths m1 and m2, respec-

tively. Analogous to Icollπ(M1,M2) and Ocollπ(M1,M2) for some π ∈ Perm, we write

Icollγ(M1,M2) and Ocollγ(M1,M2) to denote the input and output collision events,

i.e., uγm1(M1) = uγm2(M2) and vγm1(M1) = vγm2(M2), respectively, for a pair of messages

M1 and M2 and a function γ ∈ Func. The collision events for a tuple of q ≥ 2 distinct

messages M q is similarly defined as

IcollΓ(M q) =
⋃
i 6=j

IcollΓ(Mi;Mj),

and

OcollΓ(M q) =
⋃
i 6=j

OcollΓ(Mi;Mj).

We define input-collision probability as inCPΓ(M q) = Pr[IcollΓ(M q)] and output-

collision probability as outCPΓ(M q) = Pr[OcollΓ(M q)]. It is easy to observe that

outCPΓ(M q) can be bounded in terms of inCPΓ(M q). When Icoll is true Ocoll is

trivially true. Otherwise, Ocoll is true when the underlying random function has a

collision at the last intermediate output block. More specifically we have,

inCPΓ(M q) ≤ outCPΓ(M q) ≤ inCPΓ(M q) +
q(q − 1)

2n+1
. (4.7)

Compare this with the permutation case, where inCPΠ(M q) = outCPΠ(M q). Thus, one

can expect additional output collisions in function case. This will be our main attack

idea.

Lemma 4.1.1 (PRF–CBC Upper Bound). For q, `, σ ≥ 1 we have,

1. Advprf
EMACΓ1,Γ2

(q, `, σ) ≤ inCPq,`,σ +
q(q − 1)

2n+1
.
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2. Advprf
ECBCΓ1,Γ2,Γ3

(q, `, σ) ≤ inCPq,`,σ +
q(q − 1)

2n+1
.

3. Advprf
FCBCΓ1,Γ2,Γ3

(q, `, σ) ≤ inCPq,`,σ.

4. Advprf
XCBCL,L′,Γ1

(q, `, σ) ≤ inCPq,`,σ +
σq

2n
+
q(q − 1)

2n+1
.

5. Advprf
TMACL,Γ1

(q, `, σ) ≤ inCPq,`,σ +
σq

2n
+
q(q − 1)

2n+1
.

The proof of this lemma is given in section 4.1.2.1 and 4.1.2.2.

4.1.2.1 Proof of 1, 2 and 3 of Lemma 4.1.1

Following [19, 34, 163], we view EMAC, ECBC, and FCBC as instances of the Hash-

then-PRF paradigm [183] (see chapter 2 section 2.4.2.2). We discuss the implication of

this for each of the schemes below:

1. EMAC and ECBC: In case of EMAC and ECBC, we consider the output of the

underlying CBC function as the output of an almost-universal hash function. For

EMAC the final random function Γ2 acts on the output of this hash function.

For ECBC the final random function is either Γ2 or Γ3 depending upon the padding

result. Also observe that in this case the output collision on the CBC outputs for

two messages, one each from Bη+ and {0, 1}η∗ is of no use for the adversary as

the final outputs are independent due to the independence of Γ2 and Γ3. So we

assume that the messages are from Bη+ . Now using the Hash-then-PRF paradigm

we have,

Advprf
M+(q, `, σ) ≤ outCPq,`,σ. (4.8)

for M+ ∈ {EMAC,ECBC}. The result follows by simple application of Eq. (4.7).

2. FCBC: In case of FCBC, we consider the input to the final random function as the

output of an almost-universal hash function. Again using similar arguments as in

the case of ECBC we assume that the messages are from Bη+ . A small difference

from EMAC and ECBC lies in the fact that we need to bound the probability

of getting a collision on the final input, which is bounded by at most inCPq,`,σ,

whence we have

Advprf
FCBC(q, `, σ) ≤ inCPq,`,σ. (4.9)
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4.1.2.2 Proof of 4 and 5 of Lemma 4.1.1

We prove the result for XCBC here. The proof for TMAC can be obtained by slight

modification of this proof. We use the coefficient-H technique to prove this propo-

sition. Let Ω denote the set of all transcripts realizable via a uniform random func-

tion Γ←$ Func[{0, 1}η∗ ,B]. A typical transcript ω ∈ Ω is of the form (M q, T q), where

M q ∈ ({0, 1}η∗)q and T q ∈ Bq. Let M q
:= (M i)i∈[q] ∈ (Bη+)q be the padded version of

M q. Also, for all i ∈ [q], |M i| = mi ≤ `, and
∑q

i=1mi ≤ σ.

We take all transcripts ω ∈ Ω to be good, i.e., Pr [Θ0 ∈ Ωbad] = 0. We fix a transcript

ω = (M q, T q) ∈ Ω. In the ideal world, we have

Pr [Θ0 = ω] = Pr [Γ(M q) = T q] =
1

2nq
. (4.10)

Let u denote the random tuple
(
uΓ1
m1

(M1)⊕ K1, . . . , u
Γ1
mq(M q)⊕ Kq

)
, where Ki = L if

Mi ∈ Bη+ , and Ki = L′, otherwise. Let Fresh denote the event,

∀r, r′ ∈ [q] and i ∈ [mr′ ],
(
ur 6= uΓ1

i (M r′)
)
∧
(
r 6= r′ =⇒ ur 6= ur′

)
.

The output of XCBC is completely random when Fresh holds, as Γ1 has not been sam-

pled over u. Thus, we have,

Pr
[
XCBCL,L′,Γ1(M q) = T q|Fresh

]
= Pr [Γ1(u) = T q|Fresh] =

1

2nq
.

So the interpolation probability in the real world can be written as,

Pr [Θ1 = ω] ≥ Pr [Θ1 = ω|Fresh]× Pr [Fresh]

≥ 1

2nq

(
1− Pr [¬Fresh]

)
.

Once we upper bound Pr [¬Fresh], we are done by the application of coefficient-H

technique. The event ¬Fresh holds if one of the following three events occur:

1. B1 : ∃∗r, r′ ∈ [q], such that Mr,Mr′ ∈ Bη+ (or Mr,Mr′ ∈ {0, 1}η
+

), and ur = ur′ .

2. B2 : ∃∗r, r′ ∈ [q], such that Mr ∈ Bη+ and Mr′ ∈ {0, 1}η
+

, and ur = ur′ .

3. B3 : ∃r, r′ ∈ [q] and i ∈ [mr′ − 1], such that ur = uΓ1
i (M r′).

BOUNDING Pr [B1]: Note that, for B1 the masking keys do not play any role, and there

is actually a collision of the form uΓ1
mr(M r) = uΓ1

mr′
(M r′). So we can bound Pr [B1] in
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terms of inCP, i.e,

Pr [B1] ≤ inCPq,`,σ.

BOUNDING Pr [B2]: For a fix γ ∈ Func, the conditional probability of B2 is dependent

only on the randomness of the masking keys. Further the two masking keys L and L′

are uniformly and independently distributed over B. Thus, we have

Pr [B2|Γ = γ] ≤
∑

r<r′∈[q]

Pr
[
L⊕ L′ = uγmr(M r)⊕ uγmr′ (M r′)|Γ = γ

]
≤
(
q
2

)
2n
.

Since the conditional probability of B2 given γ is independent of the choice of γ, we can

conclude that

Pr [B2] ≤ q(q − 1)

2n+1
.

BOUNDING Pr [B3]: For a fix γ ∈ Func, the conditional probability of B3 is dependent

only on the randomness of the masking keys (either one of them). Thus, we have

Pr [B3|Γ = γ] ≤
∑
r∈[q]

∑
(r′,i)∈[q]×[mr′−1]

Pr
[
Kr = uγmr(M r)⊕ uγi (M r′)|Γ = γ

]
≤ σq

2n
.

Again, since the conditional probability of B3 is independent of the choice of γ, so we

have

Pr [B3] ≤ σq

2n
.

Thus,

Pr [¬Fresh] ≤ inCPq,`,σ +
σq

2n
+
q(q − 1)

2n+1
.

The result follows from coefficient-H technique.

Remark 4.1.2. Note that, the PRF analysis of OMAC is missing in lemma 4.1.1. Our

proof technique cannot be applied directly in case of OMAC. We bound the probability

of getting a collision at the input block of the final function. For CBC-MAC variants

(other than OMAC) this can be argued using the randomness of the independent ran-

dom functions or the auxiliary keys. In case of OMAC, Γ1(0) is used to mask the final

internal input block. Whenever the first message block is 0, Γ1(0) is already defined,

hence the current proof technique will not work. Having said that, we believe that

identical upper bound should hold for OMAC also.

Lemma 4.1.3 (PRF–CBC Lower Bound). Let q, ` ≥ 1 andM q := (M1, . . . ,Mq) be a q-tuple

of distinct messages such that for i ∈ [q],Mi ∈ B×(0n)`−1. Then ∀M+ ∈ {CBC-MAC,EMAC,ECBC,FCBC,XCBC,TMAC,OMAC},
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we have

Advprf
M+(q, `) ≥ inCP(M q)

(
1− q(q − 1)

2n+1

)
.

Proof. To show the lower bound we present an adversary A that achieves the claimed

PRF advantage using the given message tuple. Consider the following attack algorithm

for M+:

1. A queries Mi ∈M q and observes the corresponding output Ti.

2. If Ti = Tj for some j < i then A returns 1.

Let pM+ and pΓ denote Pr
[
A M+

= 1
]

and Pr
[
A Γ = 1

]
, respectively. Let cpq denote

the probability of having a collision on q elements chosen uniformly and independently

from B. It is well-known [78] that

1− e−
k(k−1)

2n+1 ≤ cpq ≤
k(k − 1)

2n+1
. (4.11)

Now, we know that,

Advprf
M+(q, `, σ) ≥ |pM+ − pΓ| .

For M+ ∈ {CBC-MAC,EMAC,ECBC,FCBC}we have,

|pMAC − pΓ|
1
=
∣∣outCP(M q) + (1− outCP(M q)) · cpq − cpq

∣∣
2
=
∣∣outCP(M q) · (1− cpq)

∣∣
3
≥
∣∣inCP(M q) · (1− cpq)

∣∣
4
≥ inCP(M q) ·

(
1− q(q − 1)

2n+1

)
We use Eq. (4.7) from 2 to 3 and Eq. (4.11) from 3 to 4. We can have similar analysis

for M+ ∈ {XCBC,TMAC,OMAC} by replacing outCP with inCP in the first equality

above.

Note that, due to the choice of messages (a non-zero block followed by `−1 zero blocks)

in the attack, the CBC function can also be viewed as an iterated random function

Γ(`) (denotes ` times composition of Γ). In other words, our attack also applies on the

general iterated random function. Lemma 4.1.1 and 4.1.3 show that the PRF advantages

of EMAC, ECBC, FCBC, XCBC, and TMAC are tight in inCP of CBC function.
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4.1.3 Summary of Main Results

The following theorems are the main technical results of this chapter which quantify

inCPq,`,σ. The proof of these theorems are postponed to section 4.2 and 4.3.

Theorem 4.1.4 (Upper Bound Theorem). Let q, `, σ ≥ 1. Let M q = (M1, . . . ,Mq) be a

q-tuple of distinct messages such that Mi ∈ Bmi , mi ≤ ` for all i ∈ [q], and
∑q

i=1mi ≤ σ.

Then we have,

inCPq,`,σ(M q) ≤ σq

2n
+
σ`

2n
+

8σq`3

22n
.

PROOF OVERVIEW — The proof strategy is identical to the proof of Lemma 3.5.1 in

chapter 3. Note that, the bound in this case is worse than the bound in Lemma 3.5.1. As

we will see in the proof (see section 4.2), this is due to the cumulative effect of internal

input collisions.

Theorem 4.1.5 (Lower Bound Theorem). Let q, `, σ ≥ 1. Let M q = (M1, . . . ,Mq) be a

q-tuple of distinct messages such that Mi ∈ B× (0n)`−1. Then we have,

inCP(M q) ≥
(
q

2

)
`− 1

2n
e−

4`2

2n − 3

(
q

3

)(
2`2

22n
+

6`6

23n

)
− 1

2

(
q

2

)(
q − 2

2

)(
`2

22n
+

6`3 + 2`5

23n
+

28`8

24n

)

For `, q ≥ 3, q2`
2n < 1 and ` < min{ 2n

5184 ,
2n/2

4
√

3
, 2n/3

3√36
}, the above expression is at least q2`

12·2n .

Further if we take ` = σ
q , the expression is at least σq

12·2n .

Note that, in Lemma 4.1.3, the advantage can be lower bounded to 1
2 inCP(M q) for q <

2n/2. Using Lemma 4.1.1, 4.1.3, and Theorem 4.1.4, 4.1.5 we have the exact PRF security

bounds.

Theorem 4.1.6 (PRF Bound). Let q, `, σ ≥ 3, such that q2`
2n < 1, q < 2n/2, and ` <

min{ 2n

5184 ,
2n/2

4
√

3
, 2n/3

3√36
, q}. Then, ∀M+ ∈ {EMAC,ECBC,FCBC,XCBC,TMAC}, the PRF ad-

vantage of M+ is asymptotically tight in terms of q, ` and σ, i.e.,

Advprf
M+(q, `, σ) = Θ

(σq
2n

)
.

From the above discussion it is clear that, we are only left with the analysis of the

collision probability of CBC. More specifically we have to prove Theorem 4.1.4 and

4.1.5. Following chapter 3, we use structure graphs to bound the collision probability,

albeit with a slightly different definition.

In the rest of the chapter, we take M q as the q-tuple of distinct messages such that

Mi ∈ Bmi , mi ≤ ` for all i ∈ [q], and
∑q

i=1mi ≤ σ.
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4.1.4 Input-Structure Graph

We mostly use the same set of notations and terminologies as used in section 3.2 of

chapter 3. However, we define the block-vertex structure graphs over intermediate

input vectors instead of output vectors. This small change is required as we will be

mostly interested in Icoll, and in case of functions Ocoll does not imply Icoll. In

the following subsections we briefly revisit the notations and definitions on structure

graphs. Note that, we prepend the adjective “input” just to emphasize that the vertices

in the graph correspond to the intermediate inputs.

4.1.4.1 Intermediate Inputs and Outputs

We define set Func⊥ as

Func⊥ := {γ | γ : B ∪ {⊥} → B ∧ γ(⊥) = 0n}.

Note that, the uniform distribution over Func⊥ has the same probability mass function

(pmf) as Func, i.e., a constant function taking up the value 2−n2n .

We extend the definition of CBC function for any γ ∈ Func⊥ by setting uγ0(Mi) =⊥ for

all i ∈ [q], and then following the normal CBC computation.

Recall that, this extension does not hamper our analysis, as the uniform distribution

over Func⊥ follows the same pmf as Func⊥. This extension may (or may not) look

artificial at the moment, but it will greatly simplify some of the definitions and proofs

that we discuss later. From now onward, γ and Γ will have their usual meaning, but

over the set Func⊥.

INDEX SET: We define

I = {(r, i) : r ∈ [q], i ∈ (mr]}.

The dictionary order ≺ over I is defined analogous to I0 of section 3.2 of chapter 3.

Note that, ≺ is a partial order. For ω, ω′ ∈ I, we say that ω′ is a successor of ω if ω ≺ ω′.

In such cases, we say that ω is a predecessor of ω′. For all ω ∈ I and i ∈ N, we sometimes

write ω + i to denote the i-th successor of ω in order.

SEQUENCES FOR INTERMEDIATE INPUTS AND OUTPUTS: For any r ∈ [q], the subse-

quence (xr,i)i∈(mr] is denoted xr∗. The sequences of intermediate inputs and outputs

over I is denoted as uγ(M q) and vγ(M q), respectively, where ∀r ∈ [q], uγr∗(M q) :=

uγ(Mr) and vγr∗(M
q) := vγ(Mr).
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The block-vertex input-structure (BINS) graph BStructγ(M q) = (Vγ , Eγ) for a function γ is

defined by the labeled vertex set Vγ = ûγ(M q), and the set of labeled edges

E := ∪qr=1{(u
γ
(r,i−1), u

γ
(r,i),M(r,i)) : i ∈ [mr]}.

Note that, we skippedM q from the parametrization as it is quite clear from the context.

Clearly, ⊥∈ Vγ has zero in-degree and positive out-degree, and BStructγ is a union of

Mi-walks, denoted Wi, for i ∈ [q]. Note that,

u
A−→ v ⇒ γ(u)⊕A = v. (4.12)

So, for every u ∈ V , all outward edges (similarly for inward edges) have distinct edge labels.

Using this property, it is easy to see that for all i ∈ [q], the Wi walk is unique in a BINS

graph. We denote the set of all BINS graphs by BStruct(M q). Recall the minimum index

mapping α of section 3.2.2, that maps a vertex v ∈ Vγ to the minimum index (r, i) ∈ I
such that W(r,i) = v.

Definition 4.1.7 (Input-Structure Graph). The input-structure (INS) graph Structγ =

(Ṽγ , Ẽγ) associated to γ is the α-transformed BStructγ , i.e. Structγ = α(BStructγ).

The following example is a slight modification of example 3.1 given in chapter 3.

⊥ 1

34

(a)

α7−→

(1, 0) (1, 1)

(1, 2)(1, 5)

(b)

1

12

7

4

1

12

7

4

Figure 4.1.1: INS graph corresponding to a BINS graph.

Example 4.1. Let M1 = (1, 1, 2, 1, 7) and M2 = (4) be two messages and γ(1) = 2; γ(3) = 3

for some γ ∈ Func⊥. Then, we have uγ(M1) = (⊥, 1, 3, 1, 3, 4) and uγ(M2) = (⊥, 4). The

corresponding BINS graph BStructγ , shown in Figure 4.1.1(a), has vertex set Vγ = {⊥, 1, 3, 4}
and edge set

Eγ = {(⊥, 1, 1), (1, 3, 1), (3, 1, 2), (3, 4, 7), (⊥, 4, 4)}.

The corresponding INS graph Structγ , illustrated in Figure 3.2.2(b), has vertex set Ṽγ =

{(1, 0), (1, 1), (1, 2), (1, 5)} and edges set

Ẽγ = {((1, 0), (1, 1), 1), ((1, 1), (1, 2), 1), ((1, 2), (1, 1), 2), ((1, 2), (1, 5), 7), ((1, 0), (1, 5), 4)}.
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It is easy to see that an INS graph is again a union of W̃r walks corresponding to mes-

sage Mr. Further, (1, 0) (i.e. α(⊥)) has zero in-degree, and positive out-degree. We

denote the set of all INS graphs for M q by Struct(M q).

Definition 4.1.8 (valid block labeling). An injective function β : Ṽ → B ∪ {⊥} is called

a valid block labeling for an INS graph G̃ = (Ṽ, Ẽ) if the graph G = (V, E) is a BINS graph

where

1. V := β(V) = {βv := β(v) : v ∈ Ṽ}, and

2. E is the edge set after relabeling v by βv, i.e. E = {(βu, βv, x) : (u, v, x) ∈ E}.

NECESSARY CONDITIONS FOR A VALID BLOCK LABELING: Analogous to the valid

block label in case of permutation-based structure graphs (see Definition 3.2.2) one can

identify certain restrictions on valid block labeling for an INS graph. A valid block

labeling must map (1, 0) to ⊥, and (1, 0) should be the only preimage of ⊥. Second, β

must be injective as distinct vertices in a BINS graph have distinct block labels. Lastly,

whenever we have edges e1 := (u, v, a), e2 := (u,w, b) ∈ Ẽ , we must have βv ⊕ a =

βw ⊕ b, as these are equal to γ(u) for some γ ∈ Func⊥.

Note that, if there exists an edge e1 := (u,w, a) ∈ Ẽ , then γ(βu) ⊕ a = βw for some

γ ∈ Func⊥. Now, if there exists another edge e2 := (v, w, b) ∈ Ẽ , then we must have

γ(βu) + γ(βv) = a⊕ b. A collision in G̃ is defined by such a triple δ = (u, v;w). The set

{u, v} is called the source of the collision whereas w is called the head of the collision.

We also say the edges e1 and e2 are colliding edges. Thus, a collision δ = (u, v; z)

induces a linear restriction Lδ : γ(βu) ⊕ γ(βv) = cδ, where cδ = a ⊕ b ∈ B. We denote

the set of all collisions in G̃ by ∆(G̃). Let rank(G̃) denote the rank of the system of linear

equations L(G̃) := {Lδ : δ ∈ ∆(G̃)}.

Definition 4.1.9 (Accident of an INS graph). The accident of an INS graph G̃ is defined

as Acc(G̃) := rank(G̃).

Now, we mention some important results on INS graphs which will be useful in our

analysis ahead. These results have already been proved in [19, 163] and chapter 3 for

the random permutation case. We prove these results for the random function case in

section 4.4.

Lemma 4.1.10. For any INS graph G̃ with a accidents,

Pr
[
StructΓ = G̃

]
≤ 1

2na
.

Lemma 4.1.11. The number of INS graphs with a accidents associated toM q = (M1, . . . ,Mq)

is at most
(
m
2

)a, where
∑q

i=1mi = m.
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Corollary 4.1.12. Let a ≥ 1 be an integer. Then,

Pr
[
Acc(StructΓ) ≥ a

]
≤ m2a

2na
.

4.2 Proof of Theorem 4.1.4 [Upper Bound Theorem]

In the previous chapter, we saw that Ocoll is a structure graph event. Similarly, one

can show that Icoll is a structure graph event as well. For a fixed tuple of messageM q,

Icoll is said to be true if there exists some pair of walks Wi and Wj (corresponding to

some Mi,Mj ∈M q) in StructΓ1(M q) such that W(i,mi) = W(j,mj).

Let Structa(M
q) ⊆ Struct(M q) denote the set of structure graphs with a accidents for

M q. By extending the notation we write Structa(M
q)[Icoll] to denote the subset of

graphs which additionally satisfy Icoll. We follow the approach of section 3.5.2 to

bound Structa(M
q)[Icoll].

Let us define the event Bad as,

1. for a pair of messages Mi,Mj , Acc(StructΓ(Mi,Mj)) ≥ 2, or

2. for any message Mi, Acc(StructΓ(Mi)) ≥ 1.

We aim to bound the inCP in terms of Pr [Bad] and Pr[¬Bad]. Specifically, we have

inCPq,`,σ ≤ Pr
Γ

[
IcollΓ(M q) ∩ ¬Bad

]
+ Pr

Γ
[Bad].

So we just need to upper bound the following:

1. Bounding PrΓ [Bad]: We use Corollary 4.1.12 to bound the probability of Bad. The

probability of first condition is bounded by
∑

i<j∈[q]
(mi+mj)

4

22n
(for all

(
q
2

)
pairs of

messages), and the probability of second conditions is bounded by
∑

i∈[q]
m2
i

2n (for

all q messages). Finally we have,

Pr [Bad] ≤
∑

i<j∈[q]

(mi +mj)
4

22n
+
∑
i∈[q]

m2
i

2n

≤
∑

i<j∈[q]

(mi +mj) · 8`3

22n
+
∑
i∈[q]

mi · `
2n

≤ 8σq`3

22n
+
σ`

2n
.
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2. Bounding PrΓ

[
IcollΓ(M q) ∩ ¬Bad

]
: ¬Bad implies that Acc(Wi) = 0 for all i ∈

[q], or in other wordsWi is acyclic. For any pair of messagesMi andMj , we bound

the set |Struct1[Icoll ∧ ¬Bad]| to at most min{mi,mj} (see the following claim),

whence we bound the probability to at most min{mi,mj}
2n . Hence for q messages we

have

Pr
Γ

[
IcollΓ(M q) ∩ ¬Bad

]
≤

∑
i<j∈[q]

min{mi,mj}
2n

≤ σq

2n
.

Combining 1 and 2, we have the desired result.

Claim 4.2.1. For any pair of messages M1,M2 ∈M q, we have

|Struct1[Icoll ∧ ¬Bad]| ≤ min{m1,m2}.

Proof. We prove the claim in two cases:

Case A: M1 is a prefix of M2: In this case M1 must be a strict prefix of M2 as

M1 and M2 are distinct. Further W1 is a subwalk of W2 and we have W1,i = W2,i

for i ∈ (m1]. The Icoll event is equivalent to W1,m1 = W2,m2 , or W2,m2 = W2,m1 .

Thus,W2 must contain a cycle which is not possible. So, |Struct1[Icoll ∧ ¬Bad]| =
0.

Case B: M1 is not a prefix of M2: WLOG assume that m1 < m2. In this case we

must have p = lcp(M1,M2) < m1. ¬Bad implies that W1 and W2 are paths and

Icoll implies that W1,m1 = W2,m2 . To get W1,m1 = W2,m2 we must have an acci-

dent (W1,i,W2,j ;W1,i+1) for some p+ 1 ≤ i ≤ m1 and j = m2−m1 + i. Therefore,

summing over all values of i we have, |Struct1(M1,M2)[Icoll ∧ ¬Bad]| ≤ m1 ≤
min{m1,m2}.

The result follows from case 1 and 2.

4.3 Proof of Theorem 4.1.5 [Lower Bound Theorem]

LetM q := (M1, . . . ,Mq) be a q-tuple of messages such that for i, j ∈ [q]Mi = (Xi, 0, · · · , 0) ∈
B` and Xi 6= Xj ∈ B. We want to find a lower bound of collision probability that is,

inCP(M q) = Pr
[
IcollΓ(M q)

]
= Pr

 ⋃
1≤i<j≤q

IcollΓ(Mi;Mj)


≥
∑
i<j

Pr
[
IcollΓ(Mi,Mj)

]
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− 3
∑
i<j<k

Pr
[
IcollΓ(Mi,Mj) ∧ IcollΓ(Mj ,Mk)

]
− 1

2

∑
i<j,k<m

{i,j}∩{k,m}=∅

Pr
[
IcollΓ(Mi,Mj) ∧ IcollΓ(Mk,Mm)

]
(4.13)

where the inequality follows from Principle of Inclusion-Exclusion and Bonferroni in-

equality (for details see section A.2.1 of appendix A). We have to compute the following

bounds,

• Upper bound for Pr
[
IcollΓ(Mi;Mj) ∧ IcollΓ(Mj ;Mk)

]
, where i, j and k are

distinct.

• Upper bound for Pr
[
IcollΓ(Mi;Mj) ∧ IcollΓ(Mk;Mm)

]
, where i, j, k andm are

distinct.

• Lower bound for Pr
[
IcollΓ(Mi;Mj)

]
, where i and j are distinct.

We use structure graphs to bound the above mentioned probabilities. Before moving

forward, we define a special graph which will be encountered frequently in this section.

Definition 4.3.1 (t-unicycle). A t-unicycle is a connected directed graph G = (V, E)

where ∀v ∈ V,degout(v) ≤ 1 ∨ degin(v) = 0, and E is a union of 1 cycle C and t

distinct paths P1, · · · ,Pt where exactly one endpoint of Pi is a vertex of C and the other

endpoint must have zero in-degree.

The paths Pi may not be disjoint. Example 4.2 describes a 3-unicycle.

Observe that due to our choice of messages, we have the following property on StructΓ(M q):

∀v ∈ V(StructΓ) \ {(1, 0)},degout(v) ≤ 1.

This is obvious as all the edge labels (except those involving (1, 0)) are identical (0n).

Therefore, StructΓ is either a union of paths or a union of unicycles or both. Note that, in

either case the graph has no dependent collisions with distinct heads (as that requires

degout(v) ≥ 2 for some v). Further, for a vertex with in-degree a ≥ 1, we have a − 1

independent collisions or accidents.

Remark 4.3.2. We summarize some useful properties derived from the above discussion:

1. A union of k paths has at most k−1 collisions. So the number of accidents is k−1.

2. A k-unicycle has exactly k collisions. So the number of accidents is k.
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3. A union of a k1-unicycle and k2 paths has at most k1 + k2 − 1 accidents.

4. A union of a k1-unicycle and a k2-unicycle has exactly k1 + k2 accidents.

5. In general k distinct walks (where each vertex v has degout(v) ≤ 1), can have at

most k accidents.

Example 4.2. In figure 4.3.1,

1. G is a 3-unicycle with Acc(G) = 3.

2. G′ is a union of 3 paths with Acc(G′) = 1.

(1, 0)

(1, 1) (1, 2) (1, 3) (1, 4)

(1, 5)

(1, 6)

(1, 7)
(2, 1) (2, 2)

(3, 1) (3, 2) (3, 3)

G

(1, 0)

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2)

(3, 1) (3, 2) (3, 3) (3, 4)

G′

X1

0 0 0

0

00

0

X2

0

0

X3

0 0 0

X1

0 0 0

X2

0

0

X3

0 0 0

Figure 4.3.1: Unicycles and union of paths.

We bound the above mentioned probabilities in Lemma 4.3.3, 4.3.4, and 4.3.5. The

proofs are postponed to section 4.3.1.

Lemma 4.3.3.

Pr
[
IcollΓ(Mi;Mj) ∧ IcollΓ(Mj ;Mk)

]
≤ 2`2

22n
+

6`6

23n
.

Lemma 4.3.4.

Pr
[
IcollΓ(Mi;Mj) ∧ IcollΓ(Mk;Mm)

]
≤ `2

22n
+

6`3 + 2`5

23n
+

28`8

24n
.

Lemma 4.3.5.

Pr
[
IcollΓ(Mi;Mj)

]
≥ `

2n
e−

4`2

2n .

Combining Equation 4.13 with Lemma 4.3.3, 4.3.4 and 4.3.5 we have,

inCP(M q) ≥
(
q

2

)
`− 1

2n
e−

4`2

2n − 3

(
q

3

)(
2`2

22n
+

6`6

23n

)
− 1

2

(
q

2

)(
q − 2

2

)(
`2

22n
+

6`3 + 2`5

23n
+

28`8

24n

)
.

If `, q ≥ 3, q
2`

2n < 1 and ` < min{ 2n

5184 ,
2n/2

4
√

3
, 2n/3

3√36
}, then using the inequality e−x ≥ 1 − x

and some algebraic manipulations one can show

inCP(M q) ≥ q2`

122n
.
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Further for ` = σ/q this bound becomes qσ
122n .

4.3.1 Proofs Related to the Lower Bound Theorem

4.3.1.1 Proof of Lemma 4.3.3

Let Icolli,j,k denote the event IcollΓ(Mi,Mj) ∧ IcollΓ(Mj ,Mk). From remark 4.3.2

we know that the number of accidents must be ≤ 3.

1. Observe that Icolli,j,k requires at least 2 independent collisions (accidents) (in

Wi and Wj paths and Wk and Wi ∪Wj), so

|Struct1[Icolli,j,k]| = 0.

2. Accident 2 graphs are possible only for union of paths, as the number of accidents

correspond to the collision between the three paths. There are at most ` many

choices for collision between Wi and Wj paths, and at most 2` many choices for

collision between Wk and Wi ∪Wj . This bounds

|Struct2[Icolli,j,k]| ≤ 2`2.

3. The graph can have 3 accidents iff it is a 3-unicycle. Suppose the cycle is in Wi.

Then Wi is determined by the length of cycle and the distance of Wi,0 from the

cycle which gives `2 choices for Wi. For each such choice we have at most 2`2

many choices for Wi ∪Wj , and at most 3`2 many choices for Wi ∪Wj ∪Wk. This

bounds

|Struct3[Icolli,j,k]| ≤ 6`6.

The result follows by direct application of Lemma 4.1.10.

4.3.1.2 Proof of Lemma 4.3.4

Let Icolli,j,k,m denote the event IcollΓ(Mi,Mj)∧IcollΓ(Mk,Mm). From remark 4.3.2

we know that the number of accidents must be≤ 4. We bound the four sets correspond-

ing to the number of accidents as below:

1. Accident 1 graphs are not possible. Hence,

|Struct2[Icolli,j,k,m]| = 0.
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2. The accident 2 graphs are possible if and only if (Wi∪Wj)∩(Wk∪Wm) = {(1, 0)},
where the two accidents correspond to the collision between Wi and Wj , and

collision betweenWk andWm. Now there are at most `many choices for collision

between Wi and Wj paths, and similarly at most ` many choices for collision

between Wk and Wm paths. This gives

|Struct2[Icolli,j,k,m]| ≤ `2.

3. Accident 3 graphs are possible if and only if,

(a) Wi,Wj ,Wk,Wm paths collide and the graph is a union of paths. In this case

we have at most ` many choices for collision between Wi and Wj paths.

Similarly we have at most 2` and 3` many choices for collision between Wk

and Wi ∪Wj , and Wm and Wi ∪Wj ∪Wm respectively. This gives

|Struct3[Icolli,j,k,m]| ≤ 6`3.

(b) (Wi∪Wj)∩(Wk∪Wm) = {(1, 0)} andWi∪Wj is a 2-unicycle andWk∪Wm is a

union of paths or vice versa. Without loss of generality assume that Wi ∪Wj

is a 2-unicycle. Then there exist a cycle in Wi ∪Wj . Suppose the cycle is in

Wi. Then Wi is determined by the length of cycle and the distance of Wi,0

from the cycle which gives `2 choices for Wi. For each such choice we have

at most 2`2 many choices for Wi ∪Wj . And there are at most ` many choices

for collision between Wk and Wm. This gives,

|Struct3[Icolli,j,k,m]| ≤ 2`5.

Combining the two subcases we have,

|Struct3[Icolli,j,k,m]| ≤ 6`3 + 2`5.

4. Accident 4 graphs are possible if and only if,

(a) Wi ∪Wj and Wk ∪Wm are distinct 2-unicycles. Using similar arguments as

used in the previous cases we get a bound of 4`8.

(b) Wi,Wj ,Wk,Wm form a 4-unicycle. This case can be bounded to 24`8, using

similar approach as used in the previous cases.

Combining the two subcases we have,

|Struct4[Icolli,j,k,m]| ≤ 28`8.
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The result follows by direct application of Lemma 4.1.10.

4.3.1.3 Proof of Lemma 4.3.5

Let Icolli,j denote the event IcollΓ(Mi;Mj). We are basically interested in the proba-

bility that StructΓ ∈ Struct(Mi,Mj)[Icoll]. Let Acyclic denote the property that some

graph G ∈ Struct(Mi,Mj)[Icoll] is acyclic graph, and Struct(Mi,Mj)[Icoll∧ Acyclic]

denote the subset of graphs which satisfy both Icoll and Acyclic. Thus, we have

Pr
[
StructΓ ∈ Struct(Mi,Mj)[Icoll]

]
≥ Pr

[
StructΓ ∈ Struct(Mi,Mj)[Icoll ∧ Acyclic]

]
(4.14)

We will lower bound Pr
[
StructΓ ∈ Struct(Mi,Mj)[Icoll ∧ Acyclic]

]
. First, convince

yourself that for all G ∈ Struct(Mi,Mj)[Icoll∧ Acyclic], we must have Acc(G) = 1 (as

Mi and Mj share a common suffix of length ` − 1). Now, this accident can happen at

any one of the index i ∈ [2 . . . `], each contributing exactly one structure graph.

Now fix an index i ∈ [2 . . . `] where the accident occurs and let the corresponding INS

graph be Gi. Then, a simple counting shows that the number of valid block labeling

for Gi is exactly (2n − 2) . . . (2n − 2i + 2). Each such labeling gives a BINS graph S
with exactly 2i− 2 positive out-degree vertices (excluding ⊥which is trivial) such that

α(S) = G. The probability of getting a BINS graph with 2i − 2 many vertices having

positive out-degree is equal to 22n−2in (as exactly these many outputs of Γ are fixed).

Thus, we get

Pr
[
StructΓ ∈ Struct(Mi,Mj)[Icoll ∧ Acyclic]

]
=

1

2n

∑̀
i=2

(
1− 2

2n

)
· · ·
(

1− 2i− 2

2n

)

≥ `− 1

2n

2`−2∏
i=1

(
1− i

2n

)
≥ `− 1

2n

(
1− 2`2

2n

)
≥ e−

4`2

2n
`− 1

2n
, (4.15)

where the last inequality follows from (1− x) ≥ e−2x for 0 < x < 0.5, and the assump-

tion that ` < 2
n
2
−1. The result follows from Eq. (4.14) and (4.15).
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4.4 Proofs of Results on Structure Graph

Proof of Lemma 4.1.10: The proof is similar to the proof of Lemma 3.2.6. G̃ is an INS

graph with a accidents, i.e., rank(G̃) = a. Let s denote the number of vertices, excluding

(1, 0), in G̃ with positive out-degree. Using linear algebra, we know that some s − a
choices of γ(βi) values will uniquely determine the rest of the block labels and so the

number of valid block labeling is at most 2ns−na. In fact, the number of block labeling

should be much less due to the added restriction of distinctness. Any valid choice of

β induces a block-vertex structure graph S(V, E) such that α(S) = G̃. Note that, s is

the number of vertices v ∈ V with positive out-degree. So exactly (2n)2n−s number of

functions can result in BINS graph S. Therefore,

Pr
[
BStructΓ = S

]
=

1

2ns
. (4.16)

The result follows by summing over all possible BINS graphs S such that the INS graph

α(S) = G̃.

For an INS graph G̃we define traversal T (G̃) as the sequence of vertices T (G̃) := (W̃r,i)(r,i)∈I .

Note that, T (G̃) implicitly stores the edges: for every ω ∈ I such that ω 6= (r,mr) we

have (W̃ω, W̃ω+1) ∈ E with label Mω+1. We denote the set of edges in T (G̃) by E(T (G̃)).

The partial traversal Tω(G̃) of T (G̃) is defined as the subsequence till ω ∈ I (using ≺ as

the ordering). In T (G̃), a collision δ := (u, v;w) can be equivalently written as,

δ := (W̃i = u, W̃j = v; W̃i+1 = W̃j+1 = w), i ≺ j ∈ I,

where i and j are the smallest such indices, and recall that i + 1 and j + 1 denote the

immediate successor of i and j, respectively. Under this equivalent representation we

can define a partial order ≺∆ on ∆(G̃) as follows:

For i, j, i
′
, j′ ∈ I, i ≺ j, and i

′ ≺ j
′
, let δ = (W̃i, W̃j ; W̃i+1) and δ′ = (W̃i′ , W̃j′ ; W̃i′+1).

δ ≺∆ δ′ if either,

1. j ≺ j′ , or

2. j = j
′

and i ≺ i′ .

Proposition 4.4.1. Let G̃1, G̃2 ∈ Struct(M q) be two INS graphs and T (G̃1) and T (G̃2) be their

associated traversals. Then,

∀ω ∈ I, Tω(G̃1) = Tω(G̃2) ⇐⇒ G̃Eω1 = G̃Eω2 ,
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where G̃Eωi is the edge induced subgraph of G̃i with edge set E(Tω(G̃i)). Particularly for ω =

(q,mq) we have,

T (G̃1) = T (G̃2) ⇐⇒ G̃1 = G̃2.

Proof. The necessary condition, i.e.,

G̃Eω1 = G̃Eω2 =⇒ Tω(G̃1) = Tω(G̃2)

is trivially true (by definition of traversals). So we focus on the sufficient condition, i.e.,

Tω(G̃1) = Tω(G̃2) =⇒ G̃Eω1 = G̃Eω2 .

Note that, Tω(G̃1) = Tω(G̃2) =⇒ E(Tω(G̃1)) = E(Tω(G̃2)). As the two edge sets are

equal, the edge induced subgraphs must also be equal. Thus ∀ω ∈ I, G̃Eω1 = G̃Eω2 .

Definition 4.4.2 (Accident Basis and Dependent Collisions). We define the accident

basis ∆Acc(G̃) of the INS graph G̃ as C ⊆ ∆(G̃) such that {Lδ : δ ∈ C} is the minimal

spanning set of L(G̃) and the elements of C are smallest with respect to ≺∆. Set D ⊂
∆(G̃) is called a set of dependent collisions if L(D) is linearly dependent. Note that,

Acc(G̃) = |∆Acc(G̃)| as ∆Acc(G̃) is a basis of L(G̃).

It is obvious that ∆Acc(G̃Eω) the accident basis corresponding to the edge induced sub-

graph G̃Eω (equivalently to the partial traversal Tω(G̃)) is a subset of ∆Acc(G̃).

Example 4.3. Recall example 4.1 and the corresponding INS graph, say G̃, in Figure 4.1.1(b).

For G̃, we have

1. T (G̃) = (W̃(1,0), W̃(1,1), W̃(1,2), W̃(1,3), W̃(1,4), W̃(1,5), W̃(2,0), W̃(2,1)), where W̃(1,0) =

(1, 0), W̃(1,1) = (1, 1), W̃(1,2) = (1, 2), W̃(1,3) = W̃(1,1), W̃(1,4) = W̃(1,2), W̃(1,5) =

(1, 5), W̃(2,0) = W̃(1,0), W̃(2,1) = W̃(1,5).

2. ∆(G̃) = {((1, 0), (1, 2); (1, 1)), ((1, 2), (1, 0); (1, 5))}. The equivalent representation in

T (G̃) is
{

(W̃(1,0), W̃(1,2); W̃(1,1) = W̃(1,3)), (W̃(1,4), W̃(2,0); W̃(1,5) = W̃(2,1))
}
.

3. L(G̃) =
{
γ(β(1,0))⊕ γ(β(1,2)) = 1⊕ 2; γ(β(1,0))⊕ γ(β(1,2)) = 7⊕ 4

}
.

4. Clearly, Acc(G̃) = rank(G̃) = 1.

5. ∆Acc(G̃) = {((1, 0), (1, 2); (1, 1))}.

.
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Proof of Lemma 4.1.11: The proof becomes trivial once we show that each structure

graph has a unique accident basis and distinct graphs have distinct accident basis. In

other words, we need to show that the mapping from the set of structure graphs to the

set of accident basis is injective. It is easy to see that each structure graph has a unique

accident basis (by the definition of accident basis). We now show that distinct structure

graphs have distinct accident basis.

Claim 4.4.3. Let G̃1 and G̃2 be two structure graphs. Then,

∆Acc(G̃1) = ∆Acc(G̃2) =⇒ G̃1 = G̃2.

Using Proposition 4.4.1 it is sufficient to show that

∆Acc(G̃1) = ∆Acc(G̃2) =⇒ T (G̃1) = T (G̃2).

We prove the claim by induction on the dictionary order over the index set I. Let

ω ∈ I. Suppose Tβ(G̃1) = Tβ(G̃2) for all β ≺ ω. If ω = (r,mr) for some r ∈ [q], then

the next vertex on T (G̃1), i.e., W̃ 1
ω+1 = (1, 0) = W̃ 2

ω+1, the next vertex on T (G̃2). Note

that, the superscript b ∈ {1, 2} is used to distinguish the vertices of G̃1 and G̃2. Thus,

Tω(G̃1) = Tω(G̃2). Suppose ω = (r, i) for some r ∈ [q] and i ∈ [mr − 1]. We show that the

next edge in T (G̃2), i.e., e2 := (W̃ 2
ω , W̃

2
ω+1) is same as e1 := (W̃ 1

ω , W̃
1
ω+1), the next edge

in T (G̃1). The next edge can lead to one of the following cases:

1. Suppose e1 leads to a dependent collision δ in G̃1. Then, the corresponding lin-

ear restriction Lδ must be spanned by ∆Acc(G̃Eω1 ). Now Tω(G̃1) = Tω(G̃2) =⇒
∆Acc(G̃Eω1 ) = ∆Acc(G̃Eω2 ). So Lδ is also spanned by ∆Acc(G̃Eω2 ). As the message

label is same, we must have e2 = e1.

2. Suppose e1 leads to a new accident δ in G̃1. As ∆Acc(G̃1) = ∆Acc(G̃2), δ ∈ ∆Acc(G̃2).

Thus e2 also leads to same accident δ in G̃2. Thus e1 = e2.

3. Suppose e1 leads to a a new vertex, i.e., W̃ 1
ω+1 /∈ Tω(G̃1). As the labels of both e1

and e2 are same, e2 must also lead to a new vertex. Then using the definition of

INS graph we have e1 = e2.

In all three cases we have e1 = e2, i.e., Tω(G̃1) = Tω(G̃2). This proves the claim. So

|Struct(M q)| is at most equal to the number of distinct accident basis of size a. Note

that, we can have at most m vertices in the graph. So the number of distinct accident

basis is at most
(
m
2

)a. The result follows.

Corollary 4.1.12 can be easily obtained by combining Lemma 4.1.10 and 4.1.11 followed

by some algebraic simplifications.



Chapter 5

Counter-based Input Encoding in

MACs

In CRYPTO ’95, Bellare et al. [16] proposed a method to construct non-deterministic

MACs. The so-called XOR-MAC consisted of a stateful (nonce-based) MAC, XMACC,

and a probabilistic MAC, XMACR. At high level, XOR-MAC consists of three sequential

steps:

1. Counter-based encoding of input message and parsing as a sequence of encoded

blocks;

2. Application of a pseudorandom function (or PRF) F to each of the encoded blocks

followed by the accumulation of outputs into a hash value, say h, using simple

XOR; and

3. XORing hwith F′(N), where F′ is a PRF independent of F, andN is either a nonce

(non-repeating internal state) or a random salt.

The original security proof of XOR-MAC is based on the assumption that F and F′ are

(pseudo)random functions. Later, Bernstein [24] provided an improved analysis when

F and F′ are (pseudo)random permutations. It can be easily observed that XOR-MAC

can be viewed as an instance of Wegman-Carter authenticators or Hash-then-Mask

(see section 2.4.2.3), where steps 1 and 2 constitute the universal hashing (see Figure

5.0.1), and step 3 is the finalization. Later, Bernstein proposed a Hash-then-PRF vari-

ant for XOR-MAC, called protected counter sum (or PCS) [23], which applies a PRF F′

on the hash value h in step 3 and returns the output as tag. LightMAC by Luykx et al.

[126] is the Hash-then-PRP variant of XOR-MAC, where both F and F′ are PRPs. We

group all these schemes under a common family, called the XMAC family. All the MAC

84
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schemes in the XMAC family are instances of Hash-then-{Mask/PRP/PRF}. Naturally,

the security of XMAC family mainly relies on the universal property of h which in turn

depends on the counter-based encoding of inputs. In this chapter, we formalize the

notion of counters in symmetric-key settings, and characterize the properties required

from them to guarantee security (under reasonable assumptions) for a large class of

symmetric-key schemes, including the XMAC family.

X1 := 〈1〉s‖M1 X2 := 〈2〉s‖M2 X3 := 〈3〉s‖M3 X4 := 〈4〉s‖M4

F F F F

⊕⊕⊕ ⊕⊕⊕ ⊕⊕⊕ h(M)

(a)

M h ⊕⊕⊕

F′N

T

(b)

M h F′ T

(c)

Figure 5.0.1: The XMAC family: (a) hash value computation; (b) finalization used in
non-deterministic MACs, i.e., XMACC and XMACR; (c) finalization used in determin-

istic MACs, i.e., PCS and LightMAC. Here F denotes a PRF (or PRP).

5.1 Inefficiency of Classical Counters

Counter-based schemes can be classified into two categories: (1) Counter-as-Input or

CaI, where the counter values are used as a standalone input to the underlying prim-

itive; and (2) Counter-as-Encoding or CaE, where the counter values are encoded along

with data bits within the input to the underlying primitive. Schemes based on CTR

mode [153], such as GCM [130] and SIV [172], fall under the former category, whereas

the XMAC family falls under the later category. Here we will concentrate only on CaE

schemes.

Classical counter-based encodings are based on a fixed length counter. Let us fix an

integer s ∈ N as the counter size and L := 2s. Now, given a message M ∈ {0, 1}` for

some ` ≤ L, the encoding works as follows: Let M ′ = M‖1‖0r where r is the smallest

integer such that n− s | |M ′|. Suppose M ′ = (M1,M2, . . . ,Mb), such that for all i ∈ [b],

Mi is of bit-length n− s. Then X := (X1 := 〈1〉s‖M1, . . . , Xb := 〈b〉s‖Mb) is the counter-

based encoded input corresponding to M .
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The choice of smay depend on the nature of the application. More precisely, s should be

chosen in such a way that the number of encoded blocks generated for the longest per-

missible message should not be more than 2s, to avoid the possible reseting of counter

values.

A typical choice for the maximum permissible message length would allow 264 en-

coded blocks, i.e., s is exactly 64 bits. Suppose AES-128 cipher is used to instantiate

LightMAC [126] scheme. Then, each call of AES-128 will process 64 bits of message,

as each encoded block contains 64 bits of counter value and 64 bits of message. So, it

would take 2 AES calls per 128 bits of message, independent of whether the message

size is 1 kB (213 bits), or 1 GB (233 bits). In short, for a 1 kB message, LightMAC makes

about 128 AES-128 calls. On the other hand when s = 8, the number of AES-128 calls

reduces to 69 (almost twice faster). But this limits the maximum number of encoded

blocks to 28. So, a classical counter cannot be efficient over a wide range of message

lengths.

Contrary to fixed length counters, one can simply choose the best choice of s for the

given message length, instead of fixing it throughout all the invocations. This will

definitely speed up the performance for shorter messages and provide very similar

performance when the message size approaches the maximum size. A disadvantage of

the aforementioned message length dependent counter scheme is the requirement of

prior knowledge of the message length. In many scenarios this may not be possible.

What can be a good approach when the message length is not known beforehand?

Let us consider an analogous problem from athletics. Consider a race over an unknown

distance, where the athletes would only know the finishing point once they actually

reach there. What should be a good strategy for running this race? One may consider

to run like a marathoner hoping that it is a marathon. In this case, clearly the athlete

loses if the race is a hundred meter sprint. The better solution would be to start like

a sprinter and then gradually reduce the speed as the race progresses. This could be

optimal for short runs.

Our problem is similar to the one just described. We want to find a variable length

counter that offers near optimal counter sizes for each message length. Although simi-

lar problems are well-studied in the field of prefix codes [92, 175] and data compression

[179], to the best of our knowledge it has not seen any interest in cryptography. It would

be interesting to investigate the techniques used in prefix coding and construct a near

optimal counter scheme when the message length is not known.

Although these ideas are very natural, so far they have not been applied in any of the

algorithms in the XMAC family. One possible reason is that the security guarantee is
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not obvious for variable length messages. In [16], the authors have given a general

framework for constructing XOR-MAC. But even this general framework is somewhat

lacking and does not give a unified yet simple treatment for all possible counter-based

encodings. In the main theorem of [23], it is assumed that given a message, the en-

coding produces distinct encoded blocks for distinct primitive calls. Although this

points towards a general requirement from any counter-based encoding, the indication

is rather implicit. Thus, a formal treatment of counters is required. Furthermore, this

generalization should allow a generic proof technique that applies to all counter-based

encodings.

5.2 A New Look at Counters

In computer science, counters are used to count the number of times a particular event

or process has occurred. In addition to counting, counters have a very special role in

cryptography. In XMAC family, the counter values are used to encode the message

into distinct blocks. This freshness of inputs actually helps in (possibly improved) the

security proof. The classical encoding of i is 〈i〉s which is the s-bit unsigned binary

representation of i for a fixed parameter s. Whenever i < 2s, we have distinct binary

string corresponding to each counter value. For counter-based algorithms, the parame-

ter s can be chosen as per the needs of the application domain. For example, if we know

beforehand that for an application, the message size can not be more than 232, then one

can choose s = 32. However, it must remain constant throughout all the executions of

the algorithm. This might affect the performance for smaller length messages. In this

section we introduce a new and general way of looking at counters which will provide

some tools to improve the performance of these schemes without compromising with

the security.

Throughout this chapter, we use a fixed L ∈ N to denote the maximum permissible

bit-length. We will use ̂̀ to denote the block length corresponding to bit-length `, i.e.̂̀ := d `ne.

Definition 5.2.1 (Counter function family). A counter function family (we also use CFF)

CNTR is a family of counter functions {cntr` : ` ≤ L}, where for all ` ≤ L, cntr` : N →
∪b∈(n−1]{0, 1}b.

We say that CNTR is prefix-free if for all ` ≤ L, cntr` is prefix-free (i.e., for all i 6= j,

cntr`(i) is not a prefix of cntr`(j)).

We use capital letters to denote a function family and small letters for individual func-

tions. The classical (or standard) encoding, as mentioned above, can be viewed as a
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CFF STDs, where stds`(i) = 〈i〉s, for a fixed positive integer s < n. Note that, the stan-

dard counter function std` is actually independent of ` and hence for all `, the counter

functions are same. We call such CFFs message length independent. For a message length

independent CFF CNTR, we simply write cntr to denote the counter function cntr`.

Note that, the standard counter is a prefix-free counter. Prefix-free CFF is necessary to

avoid repetitions among the inputs to the primitive (see Lemma 5.2.3 below). We also

note that the size of the output of std` is fixed for all counter values. In general for a

CFF CNTR, if ∀`, ∀i, j |cntr`(i)| = |cntr`(j)|, then we say that the CFF has fixed size.

Otherwise, we call it a variable size CFF. We will see some examples of message length

dependent and variable size CFFs later in the section.

5.2.1 Counter Function Family Based Message Encoding

Recall the encoding scheme discussed in section 5.1. When we use the standard counter

STDs with (n − s)2s ≤ L, we first parse a message M ∈ {0, 1}` as (M1, . . . ,Mb−1,M
′
b)

where b =
⌈
`+1
n−s

⌉
, |M1| = · · · = |Mb−1| = n − s and 0 ≤ |M ′b| < (n − s) such that

M = M1‖ · · · ‖Mb−1‖M ′b. LetMb = M ′b‖10d where d = n−s−1−|M ′b|. Thus, |Mb| = n−s.
Now, we define the b blocks encoding as Xi = stds(i)‖Mi for all i ∈ [b]. These blocks

are used as inputs to the underlying primitive, such as block cipher or compression

function.

We extend the same methodology to define the encoding for any other CFF CNTR.

For this, we first define the block function bCNTR(`), which associates each message

size to a unique number of blocks. We have seen that for standard counter, bSTD(`) =

d(`+ 1)/(n− s)e.

Definition 5.2.2 (Block function and Average counter length). For any CFF CNTR, we

define the block function bCNTR(`) as the least integer b such that

`+ 1 ≤
b∑
i=1

(n− |cntr`(i)|) ≤ `+ n.

We define the average counter length µCNTR(`) as

µCNTR(`) :=
1

bCNTR(`)

bCNTR(`)∑
i=1

|cntr`(i)|.

It is easy to see that µCNTR(`) ∈ (n− 1] and bCNTR(`) = d(`+ 1)/(n− µCNTR(`))e. Now

given a message M ∈ {0, 1}`, ` ≤ L, we parse it as M = M1‖ · · · ‖Mb−1‖M ′b where

|Mi| = n− |cntr`(i)| for all i < b and 0 ≤ |M ′b| < n− |cntr`(b)|. We similarly pad the last
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block to make it compatible with the corresponding counter. More precisely, we define

Mb = M ′b‖10d where d = n−|cntr`(b)|−1−|M ′b|. Thus, |Mb| = n−|cntr`(b)|. We denote

the parsing procedure as (M1, . . . ,Mb)
CNTR←− M . Finally, we define the encoding

CNTR(M) := (X1, . . . , Xb),

whereXi = cntr`(i)‖Mi for all i ∈ [b]. Note that, we abuse the notations slightly to view

the CFF as an encoding function CNTR : ∪`∈[L]{0, 1}` → B+.

Recall that one of the main purpose of counters in cryptography is to generate distinct

blocks. Mathematically, a CFF CNTR is called block-wise collision-free if for all M ∈
{0, 1}`, ` ≤ L, CNTR(M) = Xb ∈ (B)b, i.e., Xi’s are distinct for all i ∈ [b]. Now, we

provide a characterization of block-wise collision-free counters.

Lemma 5.2.3. CNTR is block-wise collision-free if and only if it is prefix-free.

Proof. We first prove the “only if” direction. Suppose there exists i < j ≤ b such

that cntr`(i) is a prefix of cntr`(j). Thus, we can find x and y such that cntr`(i)‖x =

cntr`(j)‖y ∈ B. Let (M1, . . . ,Mb)
CNTR←− M ∈ {0, 1}`, for some ` ∈ [L]. Then, we define

M ′ by replacing Mi andMj inM by x and y, respectively. It is easy to see thatX ′i = X ′j ,

where CNTR(M ′) = (X ′1, . . . , X
′
b).

To prove the other direction, let us assume Xi = Xj for some i 6= j. Therefore,

cntr`(i)||Mi = cntr`(j)||Mj . Clearly, either cntr`(i) is a prefix of cntr`(j), or cntr`(j)

is a prefix of cntr`(i).

5.2.2 Some (Efficient) Alternatives to the STD CFF

We have already demonstrated the classical or standard CFF STDs. It is a message-

length independent and fixed size CFF. In this section, we study two new examples of

CFFs and see their advantages over the standard one.

5.2.2.1 OPT: A Message Length Dependent CFF

Our first CFF is just an optimization of the classical counters. In this case, the counter

function maps any integer i to the s-bit unsigned bit representation of its argument,

where s depends on the message length instead of a pre-determined fixed parameter.

In fact, s is defined as the smallest possible value such that we can represent all the
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counter values distinctly for the given message length. Formally, the counter function

is defined as

opt`(i) = 〈i〉s, where s = min{g : 2g(n− g) > `}.

It is an example of message-length dependent and fixed size CFF. Clearly, it is a prefix-

free counter.

5.2.2.2 VARr: A Variable Size CFF

Till now we have seen counter functions which map integers to their s-bit unsigned

binary representation. In case of STDs, s is fixed (approx. log2 L), whereas in case of

OPT, s depends on the message length ` (approx. log2 `). Both STDs and OPT are

fixed size CFFs. Now we will construct a CFF which maps integers to binary strings

of monotonically increasing lengths. A similar problem is well-known in the field of

source coding. We briefly discuss these techniques assuming that the set of symbols is

N. Readers may refer to the references cited for a more detailed exposition.

PREFIX CODES: A mapping α : N → {0, 1}∗, is called a binary prefix code [175] over

integers, if for all x 6= y ∈ N, α(x) is not a prefix of α(y) and vice-versa. Here α(x) is

called the codeword corresponding to x. Huffman codes [92, 175], Shannon-Fano codes

[68, 175, 179] and Universal codes [66, 175] are some popular techniques for getting

prefix codes.

Huffman codes and Shanon-Fano codes are in general better than universal codes,

when the probability (or frequency) distribution over the integers is known. This is

generally the case in static data compression settings, such as JPEG File Interchange

Format [96] which employs a modified form of Huffman coding, and the ZIP file for-

mat [164] which uses a modified version of Shannon-Fano coding. Although Huffman

codes and Shannon-Fano codes are better than universal codes, but they require exact

probability (or frequency) distribution over the integers.

UNIVERSAL CODES: A universal code [66, 67, 175] is a binary prefix code, with the

additional property that if the probability (or frequency) distribution over integers is

monotonic, then the expected lengths of the codewords are within a constant factor of

the optimal expected lengths for that distribution. Note that, a universal code works

for any countably infinite set, and it only requires a monotonic distribution. This is

one of the main motivations behind the study of universal codes. Our problem falls

precisely in this case, as we can always assume a natural monotonic distribution over

the number of blocks. For instance all messages must have at least one block, so 1 has

the maximum frequency, followed by 2, and so on.
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In 1974, Elias proposed the first prefix code with universal property [66]. In 1975, he

followed it up by proposing several new examples of universal codes [67]. Some of

the popular examples of universal codes are Elias gamma coding [67, 175], Elias delta

coding [67, 175], Elias omega coding [67, 175], Fibonacci coding [73, 175], Levenshtein

coding [175] and Exp-Golomb coding [175]. We describe two examples of universal

codes, namely, Elias gamma and delta codings, related to our work.

Elias Gamma Coding, γ: A number i ≥ 1 is encoded as follows:

1. Let j = blog2 ic, i.e., 2j ≤ i < 2j+1.

2. γ(i) := 0j‖〈i〉j+1.

Elias Delta Coding, δ: A number i ≥ 1 is encoded as follows:

1. Let j = blog2 ic, i.e., 2j ≤ i < 2j+1.

2. δ(i) := γ(j + 1)‖lsbj(〈i〉j+1).

To represent an integer i, Elias gamma uses 2 log2 i+ 1 bits, and Elias delta uses log2 i+

2 log2(log2 i + 1) + 1 bits. Clearly, Elias delta is more compact as compared to Elias

gamma.

CFF FROM UNIVERSAL CODING: Theoretically, any universal code U can be used to

construct a length-independent variable size prefix-free CFF U-CTR. Suppose U is a

universal code, then we define U-CTR as follows:

U-CTR = {u-ctr` : ` ≤ L}where u-ctr` = U, 1 ≤ ` ≤ L.

Clearly, U-CTR is prefix-free as U is universal. Although one might be tempted to use

U-CTR straightaway, there is still some scope of improvement in this generic scheme.

Note that, the motivation for universal coding is quite different than the cryptographic

settings.

First, we are restricting the domain to some L, whereas a universal code is defined over

N. Intuitively it seems that the universal codes must have some redundant information

that we can avoid. Second, all the CFFs discussed so far have efficient counter update

(generating u-ctr`(i + 1) from u-ctr`(i)) mechanism, which is not a mandatory require-

ment for universal codes. So we should restrict our focus to only those universal codes

which support efficient update mechanism, such as Elias delta code. Now we present

our second CFF candidate, called VARr, which is a modified version of δ-CTR.
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VARr COUNTER FUNCTION FAMILY: We first fix r, an application parameter chosen

suitably (we will see very soon how to choose r). As VARr would be message length in-

dependent, it would be sufficient to define a function over the domain {1, 2, . . . , L}. To

begin with, we define varr(0) = 0r. Now, for all i ≤ L, we will recursively define varr(i)

given that varr(j) has been defined for all j < i. Like STDs and OPT, we increment the

counter by one at every step. In other words, we first define y = varr(i− 1) + 1. If the r

most significant bits get altered (this is easy to check, as the remaining bits would all be

zero), then we define varr(i) = y‖0, otherwise we define varr(i) = y. Mathematically,

we can write the recursive definition of varr for i ≥ 1, as

varr(i) =

x+ 1 if msbr(x) = msbr(x+ 1),

(x+ 1)‖0 if msbr(x) 6= msbr(x+ 1).

where x = varr(i− 1).

Clearly, size of the counter function output increases slowly but monotonically with

i. So, VARr is an example of message length independent and variable size CFF. To

understand this counter we demonstrate how the counter values are computed for r =

3. A boldface zero at the least significant bit represents the added zero bit on expansion.

The underlined bits are the third most significant bits.

000, 0010, 0011, 01000, 01001, 01010, 01011, 011000, . . .

Now we will describe how one should choose the parameter r given that the limit on

the message length is L. Note that, when the size of the counter reaches r+i for the first

time, the i least significant bits of the counter value are all zero. So the counter will be

incremented 2i many times before the next expansion in counter size. Since we need to

keep the r most significant bits non-zero (to avoid repetitions), the following equation

must be satisfied:
2r−1∑
i=0

(n− r − i)2i > L.

After doing some algebraic simplifications one can show that the smallest r that satis-

fies the above equation is approx. log2 log2 L for L < 2c(n)·n, where 1
2 ≤ c(n) < 1. Note

that, for any integer i,

varr`(i) = 〈blog2 ic〉r‖lsblog2 i(〈i〉log2 i+1),

whereas

δ(i) = γ(blog2 i+ 1c)‖lsblog2 i(〈i〉log2 i+1).
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Clearly |varr`(i)| is less than |δ(i)|when

i ≥ 22
r−1
2 −1.

We generally fix the maximum message length to be 264 bits, which gives r ≈ 6. So,

the average counter size in VARr will be less than the average counter size in δ-CTR,

when the number of generated blocks is at least 26. Specifically, for around 216 blocks,

the average counter size in VARr is shorter than the average counter size in δ-CTR by

more than 3 bits. Now we show that VARr is a prefix-free CFF.

Theorem 5.2.4. Let r be defined as above then VARr is prefix-free.

Proof. Let i 6= j be non-zero and x = msbr(varr(i)) and y = msbr(varr(j)). If x 6= y

then x can not be prefix of y. So assume x = y. Because of our choice of r, the r most

significant bits does not become 0r (except for the input 0). So, varr(i) and varr(j) have

same size. As i and j are distinct, the rest of the bits must be different. This proves the

prefix-free property.

5.2.2.3 Word Oriented Adaptation of Our Counters

The counter functions described in the preceding section are aimed to minimize the

counter size as much as possible, keeping all the counter values distinct (i.e., prefix-

free). However, there are different practical issues while implementing these counter

functions. The most important issue is to parse the message into small chunks which

are compatible with the counter-based encoding. In practice, we mostly receive mes-

sages as a sequence of words (e.g., 8-bit (byte), or 32-bit words). It would be easier for

implementation if we can parse the messages in multiples of word size. More formally,

let us fix a parameter w (elements of {0, 1}w are called words). We define OPTw (the

word oriented adaption of OPT) as follows:

optw` (i) = 〈i〉s, where s = min{g : w|g, (n− g)2g > `}.

Note that, OPT = OPT1. Now we describe how we can generalize our second proposal

to VARr,w which fits into word oriented implementation, for r ≤ w. We define the

counter function recursively as before except that we add 0w instead of single 0. More

formally, varr,w(0) = 0w. For i ≥ 1, let x = varr,w(i− 1). Then,

varr,w(i) =

x+ 1 if msbr(x) = msbr(x+ 1),

(x+ 1)‖0w if msbr(x) 6= msbr(x+ 1).
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For this choice of r, the counter function is prefix-free. In the following example we

describe how the counter expands for r = 4 and w = 8.

00000000, . . . , 0001000008, . . . , 001000000000000008, . . .

To the best of our knowledge such word-oriented definitions are not available for delta

codes (for obvious reasons). Even if we use our word-oriented definition, the resulting

code will not give better counter function. This can be argued by the simple fact that in

case of VARr,w, r is fixed, so we can simply start with some fixed w and then move as it

is. But in case of delta code we have to consider the underlying gamma code also which

is variable in nature. Handling two variable components may result in overheads in the

counter size as well as the update mechanism.

5.2.3 Comparison of Rates of Counter Function Families

Recall that we have defined the number of blocks in a message of length ` as ̂̀= d`/ne.
As we execute some costly primitive function on these blocks, it would be good to

minimize the number of blocks as much as possible.

Definition 5.2.5. We define the rate function rateCNTR(`) associated with a counter-

based encoding CNTR, as the ratio of the number of blocks in the message to the to-

tal number of blocks in the encoded message produced by CNTR, i.e., rateCNTR(`) =̂̀
bCNTR(`)

.

Now, ̂̀= d`/ne ≤ d(`+ 1)/ne ≤ d(`+ 1)/(n− k)e for any k ∈ (n− 1]. In particular, we

have ̂̀≤ d(` + 1)/(n − µCNTR(`))e = bCNTR(`). Thus, we have rateCNTR(`) ≤ 1, where

equality holds when n divides (` + 1) and the counter size is zero. Now we provide a

comparison between the rate functions for the three CFFs defined above.

1. For the standard counter STDs, the rate function is

d`/ne
d(`+ 1)/(n− s)e

≈ n− s
n

,

for `� n > s. Typically, s ≈ log2 L, which reduces the rate when L is large.

2. For OPT, the rate function is

d`/ne
d(`+ 1)/(n− log2 `)e

≈ n− log2 `

n
.

Clearly, the rate of this counter is better than STDs for all choices of ` < L.
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3. For VARr, the rate function is a complex function in n and r. We skip the exact

algebraic expression here and give an approximation,

d`/ne
d(`+ n− r + 2)/(n− r + 2− log2 `)e

≈ n− r + 2− log2 `

n

(
for `� n

)
.

Clearly, the rate of this counter is better than STD for small messages and large s.

Further the rate is comparable with OPT for n� r.

5.2.4 Word Oriented Rates of Counter Function Families

Let w ∈ N denote the word size. We will assume that n, `, L ∈ Mw, where Mw de-

notes the set of all multiples of w. We assume that L = o(2n). The word oriented rate

functions for STDs and OPT are pretty similar to their bit oriented counterparts. For

instance, in STDs, we can simply choose s to be some multiple of w. So we only derive

the word oriented rate function for VARr.

5.2.4.1 Estimating Parameter r in VARr,w

Let c = dr/we. We know that the following inequality holds for the correct value of r,

2r−1∑
i=0

(n− cw − iw)2iw+cw−r ≥ L

Let n′ = n− cw, r′ = cw − r, ṙ = 2r, and ẇ = 2w. Now we will get a lower bound on r,

ṙ−1∑
i=0

(n′ − iw)2iw+r′ ≥ L

2r
′

(
n′

ṙ−1∑
i=0

ẇi − w
ṙ−1∑
i=0

i · ẇi
)
≥ L

2r
′
[(
n′ +

wẇ

ẇ − 1

)(
ẇṙ − 1

ẇ − 1

)
− wṙẇṙ

ẇ − 1

]
1
≥ L

2r
′ [(

n′ + 2w
) (

2ẇṙ−1
)
− wẇṙ−1

] 2
≥ L

ẇṙ (2n− w)
3
≥ 2L

where 1 can be obtained by simple algebraic simplifications. As ẇ ≥ 2, we have 1
ẇ−1 ≤

2
ẇ . Using this we get 2. Also c ≥ 1 and r′ ≤ w − 1, which gives us 3. Now simple
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algebraic simplifications give us the upper bound on r,

r≥ log2

 log2

(
2L

2n−w

)
w

 (5.1)

For w < n� L, we get r ≈ log2 log2 L− log2w.

5.2.4.2 Estimating the Block Function of VARr,w

For a given message length `, we are interested in a lower bound on b(`).1 For simplicity

we also assume c = r/w, i.e., r′ = 0. We restrict our analysis to only those `, for which

∃ k ≤ 2r − 1 such that the number of blocks,

b(`) = 2r
′
k−1∑
i=0

ẇi =

(
ẇk − 1

ẇ − 1

)
. (5.2)

We find an upper bound for b(`) in the following derivation,(
n′

k−1∑
i=0

ẇi − w
k−1∑
i=0

i · ẇi
)
≤ `+ n(

n′ +
wẇ

ẇ − 1
− wkẇk

ẇk − 1

)(
ẇk − 1

ẇ − 1

)
1
≤ `+ n

(n− r + w − wk)

(
ẇk − 1

ẇ − 1

)
2

. `+ n

(n− r + w − log2(`+ n))

(
ẇk − 1

ẇ − 1

)
3

. `+ n.

1
ẇ−1 ≥

1
ẇ , and for moderately large k, we get ẇk

ẇk−1
≈ 1. Using these facts we get 2 from

1. Similarly wk . log2(`+ n) (experimental results show that wk ≈ log2 `), which gives

3 from 2. Using (5.2) and 3 we get,

b(`).
`+ n

n− r + w − log2(`+ n)
(5.3)

RATE FUNCTION FOR WORD ORIENTED VARr,w : Finally we get the following approx-

imation for lower bound on the rate function of word oriented VARr,w,

rateVARr,w(`) &
n+ w − r − log2(`+ n)

n

for w < n � `. Note that, we derived this function for some restricted ` values. But

experimental results, given in Table 5.2.1, shows that the estimation is close to the actual
1Note that, we have dropped VARr,w from the superscript as it is obvious.
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function. Figure 5.2.1 gives a graphical comparison between the rates of the three CFFs.

Table 5.2.1: Comparison between the rates offered by the three candidate CFFs for
block size, n = 128 and w = 8.

Length
STDs

STDopt,8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 0.89 0.80 0.73 0.47 0.89 0.89
256B 0.89 0.84 0.73 0.48 0.89 0.89
512B 0.91 0.86 0.74 0.49 0.91 0.89
1kB 0.93 0.86 0.74 0.50 0.93 0.88
2kB 0.93 0.87 0.75 0.50 0.93 0.88
4kB - 0.87 0.75 0.50 0.87 0.88
8kB - 0.87 0.75 0.50 0.87 0.88
16kB - 0.87 0.75 0.50 0.87 0.88
32kB - 0.87 0.75 0.50 0.87 0.88
64kB - 0.87 0.75 0.50 0.87 0.86

128kB - 0.87 0.75 0.50 0.87 0.80
256kB - 0.87 0.75 0.50 0.87 0.77
512kB - 0.87 0.75 0.50 0.87 0.76
1MB - - 0.75 0.50 0.75 0.76
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Figure 5.2.1: Rate plot for the three CFFs. Plots marked with +, ?, ×, ◦, �, and �
marked plots correspond to VAR4,8, OPT8, STD64, STD32, STD16, and STD8, respec-

tively.

5.3 Counter-as-Encoding Constructions

We propose some generic CaE schemes, such as AXU hash and MACs based on CFFs.

We also propose a HAIFA [31] based cryptographic hash function. In the last section,

we defined prefix-free counter function family. For any such prefix-free counter CNTR

and for all M , we know that X1, . . . , Xb are distinct where CNTR(M) = (X1, . . . , Xb).

With a slight abuse of notation, we let CNTR(M) to denote the set {X1, . . . , Xb} as well.

Observe that prefix-free property does not say anything about the collisions between

the encoded blocks of two distinct messages. Clearly, we will have some intersection

between CNTR(M) and CNTR(M ′) (viewed as a set) for any counter function family.
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Definition 5.3.1. A prefix-free CFF CNTR is called injective if for allM 6= M ′, CNTR(M) 6=
CNTR(M ′) (as a set).

We provide a sufficient condition for injective counter function families.

Lemma 5.3.2. Let CNTR be a prefix-free CFF. It is injective if it satisfies the following condition

∀`, `′ ≤ L, b(`) = b(`′)⇒ cntr` = cntr`′ .

Proof. Suppose for some M ∈ {0, 1}`,M ′ ∈ {0, 1}`′ , CNTR(M) = CNTR(M ′). We re-

quire to show that M = M ′. Note that, CNTR(M) = CNTR(M ′) ⇒ {X1, . . . , Xb(`)} =

{X ′1, . . . , X ′b(`′)}. So b(`) = b(`′) = b. By given condition, we have cntr` = cntr`′ and

we denote it simply by cntr. Now, we first show that Xi = X ′i for all i. As two sets are

equal for any i ≤ b, there must exist j so that Xi = X ′j . This implies that one of cntr(i)

and cntr(j) is prefix of the other, and hence i = j (as the counter function is block-wise

collision-free). Since counter functions for ` and `′ are same we have Mi = M ′i for all i.

This proves that M = M ′.

Recall that all our candidate CFFs are prefix-free. Further it is obvious to see that they

also satisfy the condition for injectivity. So we get the following corollary.

Corollary 5.3.3. CNTR ∈ {STD,OPT,VARr} is a prefix-free and injective CFF.

In the following subsections we present various schemes based on CFFs. In particu-

lar, the MAC schemes with STD are precisely the MACs from the XMAC family. The

security of all these schemes follow directly from the prefix-free and injective property

of the underlying CFF. Specifically, all the security results in the following subsections

hold, when we instantiate these schemes with CNTR ∈ {STD,OPT,VARr}.

5.3.1 Almost XOR Universal Hash Function

Let CNTR be a CFF. We define a counter based AXU-hash function, denoted CtH, based

on a length-preserving2 function Λ over B, and a CFF CNTR. LetM ∈ {0, 1}`. We define

CtHΛ,CNTR(M) = Λ(X1)⊕ · · ·Λ(Xb),

where CNTR(M) = (X1, . . . , Xb). Notice that this hash function is a generalization

of the hash functions used in the XMAC family [16, 23, 126]. It has a simple design

that requires only Λ computation and XOR operations. Furthermore, the hash can be

2A function f is called length-preserving if |f(x)| = |x|, for all x.
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computed completely in parallel. Now we show that CtH is an AXU hash function

whenever Λ is a uniform random permutation or function over B.

Theorem 5.3.4. Let CNTR be a prefix-free and injective CFF and bCNTR(L) ≤ 2n−2. Then, we

have

1. CtHΛ,CNTR is 2−n-AXU hash if Λ←$ Func(B,B); and

2. CtHΛ,CNTR is 21−n-AXU hash if Λ←$ Perm(B).

Proof. We prove the second part, while the first can be shown analogously. LetM 6= M ′

be two messages of lengths ` and `′, CTR(M) = S = {X1, . . . , Xb}, and CTR(M ′) =

S′ = {X1, . . . , Xb′}. As CNTR is prefix-free and injective, there exists at least one block

Y which appears exactly once in S ∪ S′. Thus, for any δ ∈ B,

Pr
[
CtHΛ,CNTR(M)⊕ CtHΛ,CNTR(M ′) = δ

]
= Pr

[
Λ(Y ) = ⊕y∈S1∪S2\{Y }Λ(y)

]
1
≤ 1

2n − bCNTR(`)− bCNTR(`′)

2
≤ 2

2n
.

where inequality 1 follows by conditioning on the outputs of Λ on all the blocks except

Y , and inequality 2 follows from bCNTR(L) ≤ 2n−2.

Remark 5.3.5. The above result has been proved implicitly in [16, 23, 126] for the stan-

dard counter. Our result generalizes their results for any prefix-free and injective counter

function family.

5.3.2 Message Authentication Codes

Now that we have an AXU hash function, we can apply standard methods discussed

in section 2.4.2 to obtain (non-)deterministic MAC schemes from CtH.

5.3.2.1 Deterministic MACs

Let CNTR be a CFF. Given any M ∈ {0, 1}` with ` > n, we write M = M ′‖m where m

is a block. We define

CtMAC1EK1
,EK2

(M) := EK2(CtHEK1
(M ′)⊕m).

In the following theorem we show that CtMAC1 is a secure PRF.

Theorem 5.3.6. Let CtMAC1EK1
,EK2

,CNTR be defined based on two independent instantiations

of a keyed function E, and a prefix-free and injective CFF CNTR. We have
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1. If E is a PRP, then we have

Advprf
CtMAC1E,E,CNTR

(q, ˆ̀, t) ≤ 2Advprp
E (q ˆ̀, t) +

1.5q2

2n
.

2. If E is a PRF, then we have

Advprf
CtMAC1E,E,CNTR

(q, ˆ̀, t) ≤ 2Advprf
E (q ˆ̀, t) +

q2

2n
.

Proof. We prove the first part, the second part can be shown analogously. First, we

replace the two instantiations of E with independent random permutations Π and Π′,

at the cost of 2Advprp
E (q ˆ̀, t). Now, Theorem 5.3.4 shows that CtHΠ is a 2/2n-AXU hash

function when CNTR is prefix-free and injective. So, the modified scheme CtHΠ(M ′)⊕m
is a 2/2n-AU hash when CNTR is prefix-free and injective (using Proposition 2.3.5). The

result follows by direct application of Proposition 2.4.3.

Remark 5.3.7. The deterministic MAC schemes from XMAC family, namely PCS [23]

and LightMAC [126], are instantiations of CtMAC1 with STD as the underlying CFF.

Since, STD is prefix-free and injective, the security of PCS and LightMAC follows di-

rectly from Theorem 5.3.6.

5.3.2.2 Non-deterministic MACs

Let N be a seed (either random or nonce). We define

CtMAC2EK1
,EK2

(N,M) = EK2(N)⊕ CtHEK1
(M).

Depending upon the nature ofN , we get either a nonce-based MAC, denoted CtMAC2st,

or a probabilistic MAC CtMAC2$. Using Theorem 5.3.4 and Propositions 2.4.4 and 2.4.5

we get the following result on the security of CtMAC2st and CtMAC2$.

Theorem 5.3.8. Let CtMAC2EK1
,EK2

,CNTR be defined based on two independent instantiations

of a keyed function E, and a prefix-free and injective CFF CNTR. Then,

1. If E is a PRP, then we have

• Advmac
CtMAC2st

E,E,CNTR
(q, ˆ̀, t) ≤ 2Advprp

E (q ˆ̀, t) + 2qv
2n

(
1− qm

2n

)− qm+1
2 , and

• Advmac
CtMAC2$

E,E,CNTR
(q, ˆ̀, t) ≤ 2Advprp

E (q ˆ̀, t) + 2qv
2n

(
1− qm

2n

)− qm+1
2 + 0.5q2m

2n .

2. If E is a PRF, then we have

• Advmac
CtMAC2st

E,E,CNTR
(q, ˆ̀, t) ≤ 2Advprf

E (q ˆ̀, t) + 2qv
2n , and
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• Advmac
CtMAC2$

E,E,CNTR
(q, ˆ̀, t) ≤ 2Advprf

E (q ˆ̀, t) + 0.5q2m
2n + 2qv

2n .

Remark 5.3.9. The non-deterministic MAC schemes from XMAC family, namely XMACC

and XMACR [16], are PRF-based instantiations of CtMAC2st and CtMAC2$, respectively,

with STD as the underlying CFF. Since, STD is prefix-free and injective, the security of

XMACC and XMACR follows directly from Theorem 5.3.8.

5.3.2.3 Necessity of Prefix-free and Injectivity

In all the security results discussed till now, the security proof is implied by the prefix-

free and injective property of the CFF CNTR. In other words, prefix-free and injective

properties are sufficient for security. Now, we show that these properties are also nec-

essary for CtMAC1 and CtMAC2, and hence for the XMAC family as well.

Case 1: Suppose CNTR doesn’t have injective property. As CNTR is a deterministic

function (encodings are deterministic), one can easily find two distinct messages

M and M ′ such that CNTR(M) = CNTR(M ′).

Case 2: Suppose CNTR is not prefix-free, i.e., for some ` ≤ L, we have i < j ∈ N
such that cntr`(i) is a prefix of cntr`(j). Thus, we can find two pairs (c, c′) and

(d, d′) such that c 6= d, c′ 6= d′, cntr`(i)‖c = cntr`(j)‖c′ and cntr`(i)‖d = cntr`(j)‖d′.
Using these two pairs we can construct two distinct messages M and M ′ which

only differ at the i-th and j-th blocks. Further, suppose the i-th block ofM andM ′

is c and d, respectively, and the j-th block of M and M ′ is c′ and d′, respectively.

Clearly, the i-th encoded block of M collides with the j-th encoded block of M ′

and vice-versa, i.e., they cancel out each other in CtH(M) and CtH(M ′).

In both the cases the adversary can construct M 6= M ′, such that

Pr
[
CtH(M)⊕ CtH(M ′) = 0

]
= 1.

This leads to trivial forgery attacks on CtMAC1 and CtMAC2, as the adversary can make

one MAC query with message M , and forge with M ′ and the tag T so obtained for M .

Thus, prefix-free and injective properties are both necessary and sufficient for CtMAC1

and CtMAC2.
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5.3.3 Counter-based Cryptographic Hash

As a side-result, we also propose a cryptographic hash function based on CFFs and

block cipher. A hash function H is a function from ∪Li=1{0, 1}i to B, which aspires to

achieve three chief security requirements:

1. Preimage resistance: Given a random challenge y, it is hard to find M such that

H(M) = y. Here M is called preimage of y.

2. Collision resistance: It is hard to find a pair (M,M ′) of distinct elements, called

collision pair for H , such that H(M) = H(M ′).

3. Second preimage (2PI) resistance: Given a random challenge input M , it is hard to

find a collision pair of the form (M,M ′). In this case M ′ is also called a second

preimage of M .

We employ a variant of HAsh Iterative FrAmework (HAIFA) [31] by Biham and Dunkel-

man to construct the hash function, which resists several second preimage attacks [6,

59, 116] applicable to a popular class of hash functions, the so-called Merkle-Damgård

hash [55, 134]. The main idea of HAIFA is to process counter-encoded inputs in itera-

tion. This roughly means that all primitive inputs are distinct (as counter differ) in a

hash computation, which allows for higher security. In fact, Bouillaguet and Fouque

[41] have shown that HAIFA has full (secure up to o(2n) queries) second preimage se-

curity in the random oracle model (the underlying primitive is assumed to be a public

random function).

5.3.3.1 CtHAIFA Hash Function

Let CNTR be a CFF. We present a counter based HAIFA hash function, called CtHAIFA,

based on a block cipher E-n/n (both block and key lengths are n bits). For a message

M ∈ {0, 1}η∗ , let h0 = IV, an n-bit constant, and

∀ i ∈ [b], hi := DME(hi−1, Xi),

where Xi is the i-th element of CNTR(M), and DME : B × B → B is the Davies-Meyer

compression function [166] which is defined by the mapping (x, y) 7→ Ey(x) ⊕ x. We

define CtHAIFA (illustrated in Figure 5.3.1) based on CNTR as,

CtHAIFAE,CNTR(M) := h? = DME(hb, 〈|M |〉n).
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IV E ⊕⊕⊕

X1

E ⊕⊕⊕

X2

E ⊕⊕⊕

X3

E ⊕⊕⊕

〈|M |〉n

h?
h0 h1 h2 h3

Figure 5.3.1: CtHAIFA hash computation over a 3-block message.

Since, we employ a block cipher instead of a public random function, the random oracle

model as used in [41] is not appropriate to prove the security of CtHAIFA. The ideal

cipher model (ICM) [50, 51] is widely used as the de facto model for a block cipher

based hash function. In this model, the block cipher E is modeled as an ideal cipher,

where for each K ∈ B, EK ←$ Perm(B), and EK is statistically independent of EK′ for all

K ′ 6= K ∈ B. Further, the adversary has access to E and it’s inverse E−1.

The preimage and collision security up to o(2n) and o(2n/2) queries, respectively, can

be easily shown using simple reductions to the preimage and collision resistance of DM

in the ICM. We will concentrate on the second preimage security of CtHAIFA. Formally,

the advantage of any adversary A in finding a second preimage of a hash function HE

under ICM is defined as

Adv2PI
HE

(A ) := Pr
E

[
A E±(M) = M ′ : M ←$ ∪Li=1 {0, 1}i ∧HE(M ′) = HE(M)

]
.

Theorem 5.3.10 gives an upper bound on the second preimage advantage.

Theorem 5.3.10. Let CNTR be a prefix-free and injective CFF. Then, CtHAIFA has full second

preimage security. More specifically, for any second preimage adversary A that makes q ≤ 2n/3

many queries, we have

Adv2PI
CtHAIFAE,CNTR

(A ) ≤ 3q

2n
.

Proof. We use a similar approach as used in [41] for HAIFA based on random oracle. In

the ideal cipher model, A can make both encryption and decryption queries to the un-

derlying block cipher. We also assume that the adversary computes CtHAIFA(M). The

adversary can do this by making encryption query (Mi, hi−1) and storing (hi−1,Mi, hi :=

EMi(hi−1) ⊕ hi−1) for all i ∈ [b]. Actually A can compute any DME(h,m) by making

encryption query (m,h) to E. Let the sequence of intermediate chaining values for the

challenge message M be (h0, h1, . . . , hb, hb+1).

We denote the i-th query of A by the tuple (xi,mi, ci, yi, oi) such that ci is the counter

value, mi is the message value, xi is some chaining value, and yi = DM(xi, ci‖mi)⊕ xi.
Further,
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1. if the i-th query is an encryption query then oi = 0 and A queried ci‖mi, xi and

got yi := Eci‖mi(xi).

2. if the i-th query is a decryption query then oi = 1 and A queried ci‖mi, yi and

got xi := E−1
ci‖mi(yi).

Now suppose that A produces a valid second preimage M ′. We denote this event by

Win. Let Win 6= and Win= denote the events Win ∧ |M | 6= |M ′| and Win ∧ |M | = |M ′|,
respectively. Clearly Win = Win 6= t Win=. Therefore,

Pr [Win] = Pr
[
Win6=

]
+ Pr [Win=].

We bound the probabilities of the two events on the R.H.S. as follows:

1. If Win 6= is true then |M | 6= |M ′|. In this case we must have 〈|M |〉n 6= 〈|M ′|〉n.

Therefore, the adversary found a second preimage for the last block, i.e., there

exist a query i ∈ [q] such that ci‖mi = 〈|M ′|〉n 6= 〈|M |〉n and yi⊕xi = hb+1. This is

possible with probability 1
2n−i+1 . Bounding over q queries we have Pr

[
Win 6=

]
≤

q
2n−q .

2. If Win= is true then |M | = |M ′|. In this case, if A succeeds, then A was successful

in creating a connection to some intermediate chaining value hj . Suppose this

connection is established at the i-th query, then ci must be equal to ctr`(j) and

yi ⊕ xi = hj . This probability is again 1
2n−i+1 . Bounding over q queries we have

Pr [Win=] ≤ q
2n−q .

The result follows by combining 1 and 2.

Remark 5.3.11. It is well-known that Davies-Meyer compression functions have effi-

ciently computable fixed points, DME(E−1
y (0), y) = E−1

y (0) for all y ∈ B. However, this

does not help in inverting any arbitrary hash value. This can be argued as follows:

Let hi be some hash value and the adversary aims to compute a pair (hi−1,m) such

that DME(hi−1,m) = hi. Suppose the adversary queries (m, y) to the decryption oracle,

then the probability that E−1
m (y) = x such that Em(x)⊕ x = hi is at most 1/(2n − i+ 1).

Remark 5.3.12. Dean [59] showed an attack on Merkle-Damgård hash functions, when

the underlying compression function has efficiently computable fixed points for ran-

dom message blocks. That attack cannot be extended to CtHAIFA as the underlying

CFF has block-wise collision free property.

Remark 5.3.13. In Crypto 2005, Coron et al. [50] proved that Merkle-Damgård hash with

prefix-free encoding is indifferentiable from a random oracle. Here prefix-free refers to
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the property that the encoding of M is not a prefix of the encoding of M ′, if M 6= M ′.

Recall that a prefix-free CFF means cntr`(i) is not a prefix of cntr`(j) if i 6= j. Not all

encoding schemes based on prefix-free CFFs are prefix-free encodings. In fact length

padding is necessary to get prefix-free encodings.

5.4 Comparison and Empirical Result

In this section, we explore the feasibility of replacing the classical counter STD with the

newly introduced OPT and VAR. We compare the performance of the three candidate

counter function families via their application in different CaE schemes. In particular,

we present software implementation of CtMAC1, CtMAC2st, and CtHAIFA. We instan-

tiate the underlying primitive with AES-128 [152] block cipher.

5.4.1 Platform Setup

As mentioned earlier we use AES-128 (key size 128 bits) as the underlying block cipher.

We use performance data for all inputs of length ` = 2k bits where 7 ≤ k ≤ 20. We

implemented all the schemes on Intel’s Sandy Bridge microarchitecture using AES-NI

and SSE4 instructions. All measurements were taken on a single core of Intel Xeon E5-

2640 processor at 2.5Ghz with Turbo Boost disabled. The warmup parameter is 250000

and the data is averaged over 1000000 repetitions. All results will be either in number

of cycles per byte (or CPB) or number of cycles. The baseline performance for AES-128

using AES-NI instruction set is presented in Table 5.4.1.

Table 5.4.1: Baseline CPB value of AES-128 using AES-NI in Sandy Bridge architec-
ture.

encryption key scheduling
(cycles/byte) (cycles)

(AES, serial) 6.7 117
(AES, parallel) 0.69 117

5.4.2 Implementing Counter Function Families

We choose w = 8 as the word size in our implementations. The three counter function

families basically differ in their selection of counter sizes. STDs is a standard counter

with a fixed size s; OPT computes the (optimal) counter size s based on the length of

the input; and VARr dynamically changes the counter size s based on the number of

input blocks processed so far. We choose r = 4 in our implementations.
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In practice, STDs requires a beforehand heuristic on the typical input lengths to be

encountered. In situations where the input lengths are inconstant, this scheme may

not be that efficient. If the input length is known beforehand, then OPT is the best

option as it fixes the optimal (machine-dependent) counter size. VARr has an edge over

the other two in the worst case scenario, i.e., when neither the input length is known

nor the inputs have predictable lengths. This scenario is quite frequent in cloud-server

applications.

Although OPT and VARr are much more flexible in terms of the changes in the input

length, they do require some book-keeping operations. OPT requires the computation

of a suitable counter size for the given input length. Similarly, VARr requires some kind

of mechanism to update the counter size when the current counter reaches its limit.

STDs does not incur such book-keeping overheads, as it is fixed for the construction.

Thus, STDs with s = 32 uses 32-bit counter irrespective of whether the input size is

210 or 220 bits. We implement STDs for s = w2i−1 and i ∈ [4]. Similar values are

used in OPT and VARr while choosing (or expanding) the counter size. For OPT, we

store the set of counter sizes ({8, 16, 32, 64}) along with their respective maximum input

lengths. Although this incurs a small increment in code size, it reduces the number of

micro-operations. For VARr, the overhead can be reduced significantly by reducing the

number of times the counter size is increased. For example, we increase the size in

steps of multiple of 8 · 2i−1 (i.e. 8, 16, 32, 64) (instead of 8 · i). All three counters were

implemented in 64-bit registers.

Table 5.4.2 gives the book-keeping cost incurred by the three counters. Figure 5.4.1

presents these characteristics graphically. The cost for OPT is significantly lower than

the other two candidates as in this case the major book-keeping operation is executed

only once per message. For VARr and STDs the check for last message block accounts

for most of the book-keeping cost. VARr has a slightly more involved counter update

mechanism as compared to STDs. This leads to a further increase in its book-keeping

cost. However, we remark that we have not tried to optimize the counter updation in

VARr beyond the obvious. So, it is quite possible that the book-keeping cost can be

further reduced.

5.4.3 Performance of MACs

We summarize the performance results of the deterministic MACs in Table 5.4.3 and

the stateful MACs in Table 5.4.4. Figure 5.4.2 and 5.4.3 give graphical characteristics of

the performance data.
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Table 5.4.2: Cycles per byte comparison between the book-keeping operations per-
formed by the three CFF candidates.

Length
STDs

OPT8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 0.17 0.20 0.22 0.27 0.33 0.18
256B 0.15 0.17 0.18 0.27 0.18 0.17
512B 0.14 0.15 0.16 0.23 0.13 0.15
1kB 0.13 0.14 0.16 0.22 0.09 0.15
2kB 0.14 0.13 0.15 0.22 0.09 0.15
4kB - 0.14 0.15 0.22 0.10 0.16
8kB - 0.14 0.16 0.22 0.09 0.16
16kB - 0.13 0.15 0.22 0.09 0.15
32kB - 0.14 0.15 0.22 0.09 0.15
64kB - 0.14 0.16 0.22 0.09 0.16

128kB - 0.14 0.16 0.22 0.09 0.17
256kB - 0.16 0.18 0.23 0.09 0.18
512kB - 0.17 0.19 0.24 0.09 0.19
1MB - - 0.19 0.24 0.08 0.19
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Figure 5.4.1: CPB plot for book-keeping operations of the three CFFs. Plots marked
with +, ?,×, ◦, �, and� correspond to VAR4,8, OPT8, STD64, STD32, STD16, and STD8,

respectively.

Some notes on the characteristics: It is evident from Figure 5.4.2 and 5.4.3 that OPT gives

the fastest MAC among all the three candidates. Also observe that when the input

length is comparable to the counter size both STDs and VARr closely resemble the per-

formance curve for OPT. For instance, in Table 5.4.3, look at the entries corresponding

to the range 8 kB (216) to 64 kB (219 bits). In this range all three counters offer similar

cpb of around 0.8-0.9.

For a fixed value of s in STDs, VARr outperforms STDs, until the input length is signif-

icantly smaller than 2s, or the counter size in VARr is smaller than s. For example, for

s = 32 VARr is faster than STDs, when the input length ` ≤ 128kB (220 bits). At 256

kB, the counter size in VARr expands to 32 bits which causes a change in the slope of

the curve. Even when the input length lies in the optimal range the gain in using STDs

is marginal when compared to the flexibility offered by VARr over a diverse range of

input lengths.
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Table 5.4.3: Comparison between the CPB values of CtMAC1 based on the three CFF
candidates.

Length
STDs

OPT8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 1.26 1.74 1.79 1.96 1.37 1.24
256B 1.25 1.26 1.29 1.74 1.27 1.26
512B 1.00 1.02 1.18 1.63 1.00 1.03
1kB 0.88 0.98 1.07 1.57 0.88 0.91
2kB 0.83 0.92 1.05 1.54 0.79 0.91
4kB - 0.90 1.02 1.52 0.86 0.89
8kB - 0.88 1.01 1.51 0.83 0.87
16kB - 0.88 1.00 1.51 0.83 0.88
32kB - 0.88 1.01 1.51 0.82 0.87
64kB - 0.88 1.00 1.51 0.81 0.89

128kB - 0.87 1.00 1.51 0.82 0.95
256 kB - 0.87 1.01 1.51 0.82 0.98
512kB - 0.88 1.01 1.51 0.82 1.00
1MB - - 1.01 1.51 0.95 1.01
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Figure 5.4.2: CPB plots for CtMAC1 based on the three CFF candidates. Plots marked
with +, ?, ×, ◦, �, and � correspond to CtMAC1 with VAR4,8, OPT8, STD64, STD32,

STD16, and STD8, respectively.

Note that, the effective counter size in VARr is always r bits less than the actual counter

size. This is because the first r bits are reserved. For example when the counter size

is 16 bits, only 12 bits are used. This reduces the maximum message length for 16-bit

counter from 223 bits to 219 bits.

5.4.4 Performance of HAIFA

We summarize the performance results of CtHAIFA in Table 5.4.5. The graphical rep-

resentation is illustrated in Figure 5.4.4. The comparison results are similar to those

obtained earlier, in case of CtMAC1 and CtMAC2st.
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Table 5.4.4: Comparison between the CPB values of CtMAC2st based on the three CFF
candidates.

Length
STDs

OPT8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 1.21 1.28 1.47 2.05 1.31 1.23
256B 1.03 1.11 1.30 1.74 1.07 1.04
512B 0.94 1.04 1.11 1.62 0.94 1.00
1kB 0.91 0.92 1.08 1.58 0.87 0.94
2kB 0.84 0.90 1.03 1.54 0.79 0.89
4kB - 0.89 1.02 1.53 0.85 0.88
8kB - 0.88 1.01 1.52 0.82 0.87
16kB - 0.88 1.01 1.51 0.82 0.87
32kB - 0.87 1.01 1.51 0.82 0.87
64kB - 0.87 1.00 1.51 0.81 0.89

128kB - 0.87 1.00 1.52 0.81 0.95
256kB - 0.87 1.00 1.52 0.81 0.99
512kB - 0.88 1.01 1.52 0.82 1.01
1MB - - 1.01 1.52 0.95 1.02
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Figure 5.4.3: CPB plots for CtMAC2st based on the three CFF candidates. Plots marked
with +, ?, ×, ◦, �, and � correspond to CtMAC2st with VAR4,8, OPT8, STD64, STD32,

STD16, and STD8, respectively.

Table 5.4.5: Comparison between the CPB values of CtHAIFA based on the three CFF
candidates.

Length
STDs

OPT8 VAR4,8

s = 8 bits s = 16 bits s = 32 bits s = 64 bits
128B 7.42 8.16 8.96 13.83 7.64 7.58
256B 7.37 7.76 8.95 13.33 7.31 7.47
512B 7.17 7.55 8.69 13.15 7.00 7.53
1kB 7.02 7.55 8.71 13.07 6.92 7.65
2kB 6.95 7.48 8.63 13.03 6.88 7.62
4kB - 7.43 8.65 13.00 7.43 7.59
8kB - 7.40 8.61 12.92 7.42 7.57
16kB - 7.42 8.61 12.95 7.42 7.60
32kB - 7.43 8.63 12.99 7.41 7.62
64kB - 7.41 8.64 12.97 7.41 7.78

128kB - 7.41 8.65 12.98 7.41 8.37
256kB - 7.42 8.66 12.99 7.42 8.66
512kB - 7.44 8.67 12.99 7.43 8.82
1MB - - 8.66 12.99 8.65 8.90
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Figure 5.4.4: CPB plots for CtHAIFA based on the three CFF candidates. Plots marked
with +, ?, ×, ◦, �, and � marked plots correspond to CtHAIFA with VAR4,8, OPT8,

STD64, STD32, STD16, and STD8, respectively.
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Chapter 6

Tweakable Pseudorandom

Permutation based Online Ciphers

Till now, we have seen schemes concerned with the authenticity and integrity of data,

i.e., message authentication codes. In this chapter, we shift our focus to confidentiality.

We study a special class of encryption schemes, called online ciphers [18, 39]. In partic-

ular, we study highly secure1 and efficient2 online cipher schemes based on tweakable

block ciphers.

Andreeva et al. [7] showed that online ciphers are equivalent to arbitrary tweak length

(ATL) TBCs. Although this result is more of theoretical interests, the TBC to online ci-

pher converter can be coupled with XTX [139] to get an online cipher. In this chapter,

we study the (un)suitability of straightforward application of this approach. Further,

we study variants of this approach to construct efficient and highly secure online ci-

phers.

6.1 A Design Strategy for TBC-based BBB Online Cipher

The rate of any cryptographic scheme can be defined as the ratio of the number of

blocks in any input to the number of primitive (TBC in this case) calls for that input. In

most of the cases, rate is independent of the input. A rate ≥ 1 scheme will, in general,

be more efficient then a rate 1
2 scheme when identical primitives are employed. In

this chapter, we use rate and the number of field multiplications as our parameters for

efficiency.

1Beyond-the-birthday-bound security.
2Number of primitive calls is at most d`/ne where ` denotes the message length and n denotes the

primitive block size.
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6.1.1 The Iterated TBC View of Online Ciphers

In a recent work [7] on a generic construction of offline ciphers (deterministic encryp-

tion scheme) using online ciphers as primitives, Andreeva et al. made the following

useful observation:

An ideal online cipher is equivalent to an ideal arbitrary tweak length (ATL) TBC.

We reproduce their result in Theorem 6.1.1.

Theorem 6.1.1 ([7, Theorem 1]). There is a security preserving one-to-one correspondence

between online ciphers on B+ and tweakable block ciphers on B with tweak space B∗.

While a more detailed proof is available in [7], we describe their generic construction

of online cipher based on a tweakable block cipher with arbitrary tweak space. Let ÊK

be a TBC with tweak space B∗ and block space B. We define an online cipher O
Ê

over

B+ as ∀` ≥ 1,∀x := (x1, . . . , x`) ∈ B`,

O+

Ê
(x) := Êx0K (x1)‖Êx(1]K (x2)‖ · · · ‖Êx(i−1]

K (xi)‖ · · · ‖Êx
(`−1]

K (x`),

where x0 is some constant. One can easily verify that,

Advosprp
O

Ê
(q, σ, t) ≤ Advtsprp

Ê
(σ, t′), (6.1)

where t′ = t + O(σ). Specifically, when we replace Ê with an ideal ATL tweakable

random permutation Π̂ we get Advosprp

O[Π̂]
(q, σ, t) = 0. A minor variant of the above

mentioned construction may also consider the previous ciphertext blocks along with

the plaintext blocks, i.e., tweak for the i-th block is (x(i−1],O+

Ê
(x(i−1])), and the modified

definition is,

O+

Ê
(x) := Êx0K (x1)‖Ê

(x(1],O+

Ê
(x(1]))

K (x2)‖ · · · ‖Ê
(x(`−1],O+

Ê
(x(`−1])

K (x`).

It is not hard to see that this does not give any added security advantage. But the utility

of this modification will become more apparent as we proceed. Thus any online cipher

can be viewed as a chain of iterated TBC. We call this equivalent view of online ciphers,

the iterated TBC view of online cipher.
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6.1.2 OXTX: Moving from Theory to Practice

Given the strong security guarantee of Eq. (6.1) and efficiency (rate 1 construction) of

O
Ê

, it is only natural to look for practical instantiations. The next immediate question

is: how can we instantiate an ATL TBC based on a fixed tweak length (FTL) TBC?

XTX [139] by Minematsu and Iwata is an elegant way of extending the tweak length

of an FTL TBC. At the highest level, XTX employs a pAXU hash which takes a tweak

value of arbitrary length as input and computes a fixed length tweak and input/output

masking for the underlying FTL TBC. Formally, let H : B∗ → T× B be an ε-pAXU. For

convenience, we have dropped the key of the hash function from the notation, but keep

in mind that the key is present. The hash outputH(T ) is parsed intoHtwk(T )‖Hmsk(T ).

Using this pAXU and a TBC Ẽ over the tweak space T, XTX is defined as XTXTK(x) =

Ẽ
Htwk(T )
K (x ⊕ Hmsk(T )) ⊕ Hmsk(T ). In [139], Minematsu and Iwata have shown the

following upper bound on the TSPRP advantage of XTX.

Theorem 6.1.2. Advtsprp
XTX (σ, t′) ≤ Advtsprp

Ẽ
(σ, t′′) + εσ2, where t′′ = t′ + TimeH ×O(σ).

By using Eq. (6.1) and Theorem 6.1.2, we obtain a construction OXTX with OSPRP ad-

vantage at most Advtsprp

Ẽ
(σ, t′′) + σ2ε. A recent proposal by Forler et al., called POEx

[71, 72], is an implicit example of OXTX. Although OXTX is simple (both in description

and security proof), it requires very strong bound on ε, close to 2−(n+τ). Now we de-

scribe how this becomes an issue when coupled with the need for efficiency. In this

chapter we focus on field multiplication based hash functions as the use of TBC in hash

computation will make the overall construction inefficient (decreases the rate).

SECURITY VS HASH KEY SIZE: As mentioned before, we only consider algebraic hash

functions. Note that, H : B∗ → T × B is required to be ε-pAXU for some ε. If we

keep hash key size to be n + τ then ε′ ≥ `′/2n+τ where `′ = `n/(n + τ) (the number of

(n+ τ)-bit strings present in ` blocks input). We can achieve this bound by considering

polynomial hash defined over (n + τ)-bit binary field. If we plug this ε we obtain a

bound of the form σ2`/2n+τ . To get rid of the ` factor we need to apply hash functions

with larger hash key size, such as Pseudo dot product [36, 87, 188], multi-linear hash

[43, 75, 177], and EHC [150], which is practically infeasible.

6.1.2.1 Towards A Possible Remedy

One possible way of solving or avoiding this degradation/inefficiency could be to use

a fixed number of previous blocks information instead of the entire history of previous

blocks. This will certainly replace the ` factor in case of poly-hash. But now we have
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to use both plaintext and ciphertext pairs, otherwise the overall design will no longer

be secure (the adversary can always keep the required plaintext blocks fixed). Further

a direct security reduction like OXTX will not be possible any more and an independent

security analysis is required. In section 6.3 we use this design strategy to give an (al-

most) affirmative solution for (a) in shape of a new construction that achieves a security

in the order of min(2n/n, 2(n+τ)/2) block-queries.

POEx, though an implicit instance of OXTX, tries to use this strategy. It fixes the input of

the hash function to just the immediate previous input-output of the underlying TBC

to avoid the ` factor while maintaining a key size of n + τ bits. Unfortunately, there is

a flaw in their analysis (discussed in next section). It seems that the actual bound for

POEx must have an ` factor.

6.2 Revisiting POEx

In this section, we review the security of POEx, a rate-1 online cipher based on tweak-

able block ciphers, which claims Beyond Birthday Security [71].

6.2.1 Description of POEx

POEx is an extended version of POE, the online cipher used under POET [1]. It con-

structs an online cipher by iterated usage of a fixed tweak length TBC and a pAXU hash

function on two block input/output. The algorithmic description of POEx is given in

Algorithm 6.2.1 and a schematic illustration of the encryption/decryption process is

shown in Figure 6.2.1. On a macro level the construction looks neat and the security

claim looks correct. But in the following subsections we describe a birthday bound

attack on POEx that invalidates the security claim.

The security of POEx is claimed to be 2
n+τ
2 block-queries. More specifically we have

the exact security claim in Theorem 6.2.1.

Theorem 6.2.1 (Theorem 3 in [71]).

Advosprp

POEx[Ẽ,H]
≤ 2Advtsprp

Ẽ±
(σ,O(t)) + 2(σ + 1)2ε ·

(
2 +

2τ

2n − (σ + 1)

)

6.2.1.1 Flaw in POEx Security Analysis

The security of POEx mainly rely on the pAXU bound (say ε) of the underlying hash

function. For example one of the bad events in the security proof of POEx is (T(i,j), X(i,j))
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Algorithm 6.2.1 Definition of POEx
Ẽ,H

. µ, ν ∈ F2n , are two application specific con-
stants.

1: function POEx+
ẼK ,HL

(P )

2: (X0, Y0)← (µ, ν)

3: (P1, . . . , P`)
n←− P

4: for i← 1 to ` do

5: (Ti, Ui)← HL(Xi−1, Yi−1)

6: Xi ← Pi ⊕ Ui
7: Yi ← ẼTi

K (Xi)

8: Ci ← Yi ⊕ Ui
9: end for

10: return C := (C1‖ · · · ‖C`)

11: end function

1: function POEx−
ẼK ,HL

(C)

2: (X0, Y0)← (µ, ν)

3: (C1, . . . , C`)
n←− C

4: for i← 1 to ` do

5: (Ti, Ui)← HL(Xi−1, Yi−1)

6: Yi ← Ci ⊕ Ui
7: Xi ← Ẽ−Ti

K (Yi)

8: Pi ← Xi ⊕ Ui
9: end for

10: return P := (P1‖ · · · ‖P`)

11: end function

HL
µ

ν

P1

C1

⊕

ẼK

⊕

X0

Y0

U1

T1

U2

HL

P2

C2

⊕

ẼK

⊕

X1

Y1

U2

T2

U2

HL

P3

C3

⊕

ẼK

⊕

X2

Y2

U3

T3

U3

Figure 6.2.1: Schematic of the encryption/decryption process for a 3-block plaintext/-
ciphertext using POEx construction.

(tweak-input) collision. This case has been bounded to σ2ε/2. The argument being:

there can be at most
(
σ
2

)
pairs and for each pair the pAXU bound is ε. But this ar-

gument only holds when all inputs to the hash function are independent of the hash

key. In case of POEx this is not true as the input to the hash function is dependent

on the previous hash values (linear combination of previous hash value and current

message block). For example if we consider the candidate hash function given in [71],

the hash-function inputs are dependent and the polynomial degree will accumulate

through subsequent inputs to poly-hash. So the security claim is invalid. It seems that

POEx requires a stronger assumption, i.e. it needs pAXU assumption on the iterated

hash function. This may not be easy to achieve with algebraic hash functions.

6.2.2 Birthday Bound Attack on POEx

We substantiate the flaw discovered in the previous subsection by constructing an arti-

ficial example of a pAXU hash function that is not secure when used in iterated fashion.
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For the sake of simplicity we take τ = n. Similar attacks can be constructed for any ar-

bitrary τ . The main idea is to construct an AXU hash, say SciFi, that on any given input

converges to a fixed value when iterated a moderate number of times. By looking at

the masking and tweak generator it can be observed that the adversary can use SciFi to

fix the masking to an unknown but constant value. But the same is not possible for the

tweak value as the Yi value is not in the control of the adversary. Once the masking is

fixed, the adversary can expect tweak collisions in birthday bound.

6.2.2.1 AXU Hash using Random Mapping over Ranked Nodes

Let rank : B→ [0..n] be a surjective function which is defined as follows:

∀x ∈ B, rank(x) :=

0 x = 0,

i 2i−1 ≤ x ≤ 2i − 1.

Let Bi = {x ∈ B : rank(x) = i} and B<i = ∪j<iBj . Clearly B = ti∈[n]Bi. Let

Ψ←$ Perm(B)

Φ0←$ Func(B0 × B,B0)

∀i ∈ [1..n], Φi←$ Func(Bi × B,B<i)

We write Φ to denote the random vector (Φ0, . . . ,Φn). We define a keyed hash function

SciFiΨ,Φ : B× B→ B as follows:

∀(x, y) ∈ B× B, SciFiΨ,Φ(x, y) := Ψ−1 ◦ Φrank(Ψ(x))(Ψ(x), y).

For the sake of simplicity, we drop the subscript Ψ,Φ from SciFiΨ,Φ. It is easy to verify

that after at most n iterations SciFi returns a fixed value, i.e. for any x and yn :=

(y1, . . . , yn) ∈ Bn we have

SciFin(x, yn) := SciFi(· · · (SciFi(SciFi(x, y1), y2) · · · , yn) = c,

where c is some unknown but constant value. This can be argued as follows: after each

iteration the rank of the output reduces by at least 1. Since there are finite number of

ranks, n + 1 to be precise, we must be at rank 0 in n iterations. Once we reach rank 0

the output becomes fixed to Ψ−1(0). We summarize this property in Lemma 6.2.2.

Lemma 6.2.2. For all m ≥ n, and (x, ym) ∈ B × Bm, we have SciFim(x, ym) = c, where

c = Ψ−1(0).
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In Lemma 6.2.3 below, we show that SciFi is an O
(
n
2n

)
-AXU hash function. Thus,

security wise it can be a good candidate for AXU hash.

Lemma 6.2.3. For distinct (x1, y1) 6= (x2, y2) ∈ B× B and δ ∈ B, we have

Pr [SciFi(x1, y1)⊕ SciFi(x2, y2) = δ] ≤ n+ 2

2n
.

In other words, SciFi is an (n+ 2)2−n-AXU hash function.

Proof. Let R1 and R2 denote rank(Ψ(x1)) and rank(Ψ(x2)), respectively. Let

NZ := [n]× [n] and Z := (n]× (n] \ NZ.

Now we have,

Pr [SciFi(x1, y1)⊕ SciFi(x2, y2) = δ]

=

ε1︷ ︸︸ ︷
Pr [SciFi(x1, y1)⊕ SciFi(x2, y2) = δ, (R1, R2) ∈ NZ]

+

ε2︷ ︸︸ ︷
Pr [SciFi(x1, y1)⊕ SciFi(x2, y2) = δ, (R1, R2) ∈ Z] (6.2)

We bound ε1 and ε2 below:

BOUND ON ε1: For a fixed ψ ∈ Perm(B) if we consider inputs (x1, y1) and (x2, y2)

such that ψ(x1) 6= 0 and ψ(x2) 6= 0, then the bound effectively reduces to bound-

ing the probability that the sum of outputs of two (possibly) independent random

functions on distinct inputs equals to δ. This can be bounded by 2−max{r1,r2} (by

conditioning on the output of the function with smaller range). Using the preced-

ing argument and conditioning on Ψ, we have

ε1 ≤
∑

(r1,r2)∈NZ

Pr
[
Ψ−1(Φr1(Ψ(x1), y1))⊕Ψ−1(Φr2(Ψ(x2), y1)) = δ

]
× 2r1+r2−2

22n

≤
∑

(r1,r2)∈NZ

1

2max{r1,r2}−1
× 2r1+r2−2

22n

≤
∑

(r1,r2)∈NZ

2r1−1

22n
=

n

2n
(6.3)

BOUND ON ε2: In this case at least one of x1 or x2 is mapped to 0 by Ψ. Further

R1 = R2 = 0 is possible if and only if x1 = x2, in which case we can simply

bound the probability to at most 2−n. So without loss of generality we assume

that at least one of them is non-zero, say R1. Now we can proceed as earlier and
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we have

ε2 ≤
1

2n
+
∑
r1∈[n]

Pr
[
Ψ−1(Φr1(Ψ(x1), y1)) = x2 ⊕ δ

]
× 2r1−1

22n

≤ 1

2n
+
∑
r1∈[n]

1

2r1−1
× 2r1−1

22n

≤ 2

2n
(6.4)

The result follows from Eq. (6.2)-(6.4).

6.2.2.2 Attack Description

Lemma 6.2.3 shows that SciFi is a good AXU hash function, whereas Lemma 6.2.2

shows that the iterated version SciFi≥n is a pathetic AXU hash. We use this later fact

to construct a birthday bound attack on POEx. Suppose we instantiate the POEx con-

struction using a tuple of AXU hash functionsH := (Γ,SciFi) where Γ←$ Func(B×B,B)

is chosen independently of SciFi. Further the mapping is defined as follows:

H(Xi, Yi) = (Γ(Xi, Yi),SciFi(Xi, Yi))

Since Γ is a uniform random function over Func(B × B,B) and hence a 2−n-AXU hash

function, using Proposition 2.3.5 we can conclude that H is an n+2
22n

-pAXU hash func-

tion. Note that, the choice of universal hash is not rigid. We can take any good candi-

date of universal hash provided it is keyed independently of SciFi. Now consider an

adversary A that works as follows:

1. A makes q queries of the form (Pi‖0`−1), such that P q ∈ (B)q and ` > n, and

observes the outputs (C(i,1)‖ · · · ‖C(i,`)).

2. If (C(i,j), C(i,j+1)) = (C(i′,j′), C(i′,j′+1)) for two distinct block indices (i, j) and

(i′, j′), then A returns 1.

For an ideal online cipher this should require roughly 2n many blocks. But for POEx
Π̃,H

this would require roughly 2n/2 many blocks. This can be argued using Lemma 6.2.2

which, in this case, implies that for each query beyond block index n − 1, the input

becomes a constant value. So all that is required is a tweak collision which can be

achieved if we have roughly 2n/2 blocks. Hence POEx is at most birthday bound secure

online cipher.
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Remark 6.2.4. We remark that the hash function notion (pAXU) used in the original

POEx design [71] has been modified in a later journal version [72] with due acknowl-

edgments to our observations. The authors have defined a new and stronger notion of

hash function, called Chained-Partial-AXU Hash Function (an extension of the pAXU

notion for iterated use), and based their security analysis on this notion.However, the

authors have not given any practical instantiations for such hash function and we spec-

ulate that given the stringent conditions it will be difficult to construct an efficient can-

didate with close to 2−(n+τ) bound. We refer the readers to [72] for a more detailed

exposition. In this chapter, we have considered the original POEx design from [71].

6.3 XTC: Rate-1 (Almost) Optimally Secure Online Cipher

In the preceding section we showed a subtle flaw in the security claim (and proof) of

POEx. Here we explore the possibility of another approach towards a practical instan-

tiation of Andreeva et al. [7] TBC to online cipher converter. As discussed in section 6.1,

OXTX cannot achieve both rate-1 and BBB security simultaneously. A possible remedy

is the idea of using just a fixed number of previous input-output block-pairs informa-

tion. Based on this idea, we propose XTC, that achieves min (2n/n, 2
n+τ
2 ) block-queries

security. The XTC construction is similar to POEx in the sense that it follows POEx’s

idea of generating the mask and tweak using a fixed number of previous blocks infor-

mation. However, POEx uses pAXU property on hash function with at most `-block

input, whereas XTC uses pAXU property on hash function with at most three blocks

input.

6.3.1 An Impossibility Result

In POEx [71] as well as XTC (see subsection 6.3.2), only a small number of previous

blocks are used for tweak and mask computations. POEx uses the immediate previous

TBC input and output blocks, where as XTC employs the previous two plaintext and

ciphertext blocks. This is done to avoid the loss of ` factor in security. In Theorem 6.3.2,

we show an impossibility result that would imply that this approach will be futile when

the security goal is more than 2n block-queries, which is a natural possibility for τ > n.

Definition 6.3.1. A pair of distinct tuples (a1, . . . , am) and (b1, . . . , bm) is called an m-

block all-but-first collision pair if ai = bi for all i ∈ [2 . . .m].

Theorem 6.3.2. Given m ≥ 3, for an ideal online cipher an m-block all-but-first collision pair

can be constructed in O(m22n) block-queries.
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Proof. Consider the following algorithm A :

1. Make roughly 2n/2 distinct encryption queries (Pi, x) and stores the result (C(i,1), C(i,2))

in L. At least one collision on the second ciphertext block is expected, say (Pi, x)

and (Pj , x) with the corresponding ciphertext (C(i,1), y) and (C(j,1), y).

2. Rename Pi, Pj , C(i,1), and C(j,1) as p1, p′1, c1 and c′1. Let p′2 = p2 := x and c′2 = c2 =

y.

3. For i ∈ [3 . . .m]:

(a) For all a ∈ B: Make 2 queries (p1, p2, . . . , pi−1, a) and (p′1, p
′
2, . . . , p

′
i−1, a), and

check if (c2, . . . , ci) = (c′2, . . . , c
′
i). If the equality holds for some a, then fix

p′i = pi := a and move to next i.

4. Set pm := (p1, . . . , pm), cm := (c1, . . . , cm), p′m := (p′1, . . . , p
′
m), and c′m = (c′1, . . . , c

′
m).

5. Returns (pm, cm) and (p′m, c′m) as the m-block all-but-first collision pair.

As the first block is distinct for all queries in step 1 above, there is very high chance of

getting a collision pair. In step 3(a) at the i-th iteration (p1, p2, . . . , pi−1) is distinct from

(p′1, p
′
2, . . . , p

′
i−1) so the outputs ci and c′i are drawn independently from B, whence we

expect one collision in 2n tries. Hence the total block-query complexity is bounded by

O(m2 · 2n).

Step 1 of A in the proof of Theorem 6.3.2 gives a simple corollary that lower bounds

the number of previous blocks information required for n-bit security.

Corollary 6.3.3. To achieve n-bit security at least 2 previous plaintext-ciphertext blocks infor-

mation is required.

Remark 6.3.4. Although we constructed an all-but-first collision pair with start index as

the first index of the queries, similar strategy can be applied if the collision pair has to

be shifted to a later start index.

As long as m is a polynomial in n and n is sufficiently large, Theorem 6.3.2 and Remark

6.3.4 imply that an adversary can always create a collision on m previous input and

output blocks in O(2n) (ignoring the polynomial factors), and thus the tweak value for

the current block will collide leading to an easy distinguisher. Thus, to achieve signifi-

cantly more than 2n block-queries security one has to use more than m (polynomial in

n) many previous blocks.
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6.3.2 Description of XTC

For the sake of simplicity we assume tweak size τ = nwhile describing the scheme and

its security. Later we give ways to extend the result for all τ . Using Corollary 6.3.3 we

know that 2 previous plaintext-ciphertext block-pairs can be sufficient for the desired

security goal. The algorithmic description of XTC is given in Algorithm 6.3.1, while

Figure 6.3.1 gives a pictorial illustration of the encryption/decryption process. XTC

can be viewed as an iteration of XTX, much like OXTX, albeit with tweak length fixed to

three blocks. We call this equivalent view O′XTX. In Figure 6.3.1, this equivalent view is

represented by dashed rectangles which denote the underlying XTX component.

Although OXTX and XTC are similar in their use of XTX for tweak length extension,

yet XTC is much more efficient while maintaining a satisfactory level of security. For

a plaintext-ciphertext pair (P,C) we only use (Si−2 = Pi−2 ⊕ Ci−2, Pi−1, Ci−1) as the

tweak input to the i-th block XTX. While this enables the application of efficient alge-

braic hash functions within XTX, the security analysis of the overall scheme becomes a

bit more involved.

6.3.2.1 Design Choices and Rationale

We choose the pair (Si−2, Pi−1, Ci−1) as it reduces the state size by one block, and is

the simplest such pair. Further it can be easily verified that we cannot reduce this to

2 blocks without compromising on security. As far as the choice of hash function is

concerned, we need universal property for the tweak part and XOR universal for the

masking part. In other words we need H to be a pAXU hash over 3 blocks input. Since

we are considering only rate-1 constructions we recommend algebraic hash functions

for H .

BRW-BASED PAXU CANDIDATE: BRW hash function is an efficient candidate that

requires just one multiplication when the input is restricted to three blocks. It was

proposed by Bernstein [28] based on previous works by Rabin and Winograd [169].

For a 3-blocks input (a1, a2, a3), BRWx(a1, a2, a3) is defined as:

BRWx(a1, a2, a3) := (a1 ⊕ x)� (a2 ⊕ x2)⊕ a3,

where � and ⊕ denote field multiplication and addition, respectively, over F2n gener-

ated by some predefined primitive element. It is well-known that BRW hash with three

blocks input is 3 · 2−n-universal [28, 46].
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For L ∈ B2, let L1 and L2 be the most and least, respectively, significant n bits of L. We

define the keyed hash function, HL : B× B× B→ B× B as follows

∀S, P,C ∈ B, (T,U) := HL(S, P,C) = (BRWL1(C, S, P ),BRWL2(C, S, 0)).

Note that, the hash function definition is not arbitrary over the three block inputs. For

example the security reduces to birthday bound if we just swap the values of T and U

as after the swapping, U does not follow AXU. In Lemma 6.3.5 we bound the pAXU

probability of H .

Lemma 6.3.5. For distinct (S, P,C), (S′, P ′, C ′) ∈ B3, and δ ∈ B we have,

Pr
L

[
HL(S, P,C)⊕HL(S′, P ′, C ′) = (0, δ)

]
≤ 9

22n
.

Proof. To compute the output (T,U), HL employs two calls to BRW hash with indepen-

dent keys L1 and L2, which enables a universal bound of 9 · 2−2n. But we need pAXU

property, which in this case means that the second output should have AXU property.

Note that, the last input block for the second call of BRW is always zero. This enables

us to consider the difference block as part of the input and reduce the AXU bound to

universal bound.

Pr
L

[
HL(S, P,C)⊕HL(S′, P ′, C ′) = (0, δ)

]
≤ Pr

L1

[
BRWL1(C, S, P ) = BRWL1(C ′, S′, P ′)

]
× Pr

L2

[
BRWL2(C, S, 0)⊕ BRWL2(C ′, S′, 0) = δ

]
= Pr

L1

[
BRWL1(C, S, P ) = BRWL1(C ′, S′, P ′)

]
× Pr

L2

[
BRWL2(C, S, δ) = BRWL2(C ′, S′, 0)

]
≤ 9

22n
.

We emphasize here that the above definition is not the only possibility. Indeed, one can

use polynomial hash to further reduce the state size at the cost of two more multipli-

cation. In general any good pAXU hash function can be employed. In this work we

mainly focus on saving on the number of multiplications.

DERIVING HASH KEYS VIA TBC: XTC requires two hash keys. However the hash

keys can be easily derived via TBC by reserving one tweak bit for key generation. For

example one can use (L1, L2) = (Ẽ
1‖0
K (0), Ẽ

1‖1
K (1)) as the hash key and fix the most
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Algorithm 6.3.1 Definition of XTC
Ẽ,H

. We take µ = υ = 0 and ν = 1.

1: function XTC+

ẼK ,HL
(P )

2: S−1 ← υ

3: P0 ← µ

4: C0 ← ν

5: (P1, . . . , P`)
n←− P

6: for i← 1 to ` do

7: (Ti, Ui)← HL(Si−2, Pi−1, Ci−1)

8: Xi ← Pi ⊕ Ui
9: Yi ← ẼTi

K (Xi)

10: Ci ← Yi ⊕ Ui
11: Si ← Pi ⊕ Ci
12: end for

13: return C := (C1‖ · · · ‖C`)

14: end function

1: function XTC−
ẼK ,HL

(C)

2: S−1 ← υ

3: P0 ← µ

4: C0 ← ν

5: (C1, . . . , C`)
n←− C

6: for i← 1 to ` do

7: (Ti, Ui)← HL(Si−2, Pi−1, Ci−1)

8: Yi ← Ci ⊕ Ui
9: Xi ← Ẽ−Ti

K (Yi)

10: Pi ← Xi ⊕ Ui
11: Si ← Pi ⊕ Ci
12: end for

13: return P := (P1‖ · · · ‖P`)

14: end function

HL

P0 := µ

C0 := ν

S−1 := υ

P1

C1

⊕

ẼK

⊕

T1

U1

U1

X1

Y1

HLS0

P2

C2

⊕

ẼK

⊕

T2

U2

U2

X2

Y2

HLS1

P3

C3

⊕

ẼK

⊕

T3

U3

U3

X3

Y3

Figure 6.3.1: Schematic of the encryption/decryption process for a 3-block plaintext/-
ciphertext using XTC construction. For each i ≥ 0, Si := Pi ⊕ Ci. Dashed rectangles

denote the XTX components of XTC and can be used to view XTC as O′XTX.

significant bit (MSB) of the tweaks for each TBC in block processing to 0. This will lead

to a nominal loss of 1 bit security.

6.3.3 Security of XTC

We show that XTC
Π̃,H

construction is secure up to 2n/n block-queries given the hash

function H is O(2−2n)-pAXU hash and Π̃ is a uniform tweakable random permutation.

More generally, we prove the upper bound result on the OSPRP advantage of XTC
Ẽ,H

in Theorem 6.3.6.

Theorem 6.3.6. If XTC is defined as above, H is an ε-pAXU, and σ ≤ 2n−3, then we have

Advosprp
XTC

Ẽ,H
(q, `, σ, t) ≤ Advtsprp

Ẽ
(σ, t′′) + σ2ε+

2(n+ 2)σ

2n
.
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PROOF OVERVIEW — Before proceeding with the proof it would be better to discuss

the main crux of the proof briefly. We employ the iterated TBC view (see Section 6.1)

of an online cipher. The main steps of the proof are shown in Figure 6.3.2. Basically,

#»
Π XTC

Ẽ,H

O
Π̂

O′
Π̂′

O′XTX
Π̃,H

O′XTX
Ẽ,H

Advtsprp

Ẽ
+ σ2ε+ 2(n+ 2)σ2−n

(1)

Advtsprp

Ẽ

(2)

σ2ε

(3)

2(n+2)σ
2n

(4)

(5)

Figure 6.3.2: Main steps in the proof are given in (1)–(5). ⇐⇒ with overlying text de-
notes the distance between the corresponding schemes and = denotes the equivalence
between the corresponding schemes. Sequence of steps: (1) XTX based view of XTC;

(2) and (3) TSPRP security of XTX; (4) Distance between O′
Π̂

and OΠ̂.

we reduce the original XTC construction based on Ẽ and H to a variant of O
Ê

, that we

call O′
Π̂′

based on an ATL tweakable uniform random permutation Π̂′. O′
Π̂′

behaves

exactly as O
Π̂

, except that it restricts the i-th block tweak to (Si−2, Pi−1, Ci−1). Finally,

we bound the distance between O
Π̂

and O′
Π̂′

. Intuitively, the two oracles will behave

identically until there is a tweak collision in one of them which is not reciprocated by

the other one. Now a tweak collision in O
Π̂

always implies a tweak collision in O′
Π̂′

.

But the converse is not true, and we bound the probability of this event to complete the

proof.

Proof. We follow the series of steps shown in Figure 6.3.2. Step (1) simply transforms

XTC to O′XTX and step (5) transforms
#»

Π to its iterated TBC view O
Π̂

. Steps (2) and (3)

are used to replace the underlying XTX
Ẽ,H

with an ATL TRP, Π̂. Using Theorem 6.1.2,

steps (2) and (3) are bounded by Advtsprp

Ẽ
(σ, t′′) + εσ2. In step (4) we upper bound the

distance between O
Π̂

and O′
Π̂′

. We employ coefficient-H technique (see Corollary 2.2.2).

Let Ω denote the set of all attainable transcripts for the ideal oracleO0 := O
Π̂

. A typical

transcript ω ∈ Ω is of the form (P q, Cq), where P q, Cq ∈ (Bη+)q, |Pi|n = pi ≤ ` and∑
i∈[q] pi ≤ σ. In addition, (P q, Cq) satisfies the online property.

We say that a transcript ω ∈ Ω is bad, denoted ω ∈ Ωbad, if the following condition

holds:

TColl : ∃(i, j) ∈ [q]× [pi], (i′j′) ∈ [q]× [pi′ ], such that

P
(j−1]
i 6= P

(j′−1]
i′ ∧ (S(i,j−2), P(i,j−1), C(i,j−1)) = (S(i′,j′−2), P(i′,j′−1), C(i′,j′−1)).
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It is quite straightforward to see that for all ω ∈ Ω \ Ωbad, we have

Pr [Θ1 = ω] = Pr [Θ0 = ω],

since ¬TColl implies that a tweak collision in the real world means a tweak collision in

the ideal world and vice-versa. So, all that we are left with is bounding the probability

of TColl (viewed as the event associated with the predicate TColl).

BOUND ON Pr[TColl]: In the following discussion we assume that all the queries are of

encryption type. This will not hamper the correctness of our analysis due to the online

property, rather it will greatly simplify the analysis. The basic idea is to first bound the

number of multicollisions on (S(i,j−2),P(i,j−1)), and then for each (i, j) bound the prob-

ability of C(i,j−1) collisions over the multicollision set that contains (S(i,j−2),P(i,j−1)).

Note that, (P
(j−1]
i 6= P

(j′−1]
i′ ) ∧ (P(i,j−1) = P(i′,j′−1)) =⇒ (P

(j−2]
i 6= P

(j′−2]
i′ ), otherwise

the probability of TColl is zero. Let

I :=
{

(u, v) ∈ [q]× [pu] : ∀(u′, v′) < (u, v) ∈ [q]× [pu′ ], P(v]
u 6= P

(v′]
u′

}
.

We define the multicollision relation ∼ on I as follows:

∀(u, v), (u′, v′) ∈ I, (u, v) ∼ (u′, v′) ⇐⇒ (S(u,v−1),P(u,v)) = (S(u′,v′−1),P(u′,v′)).

Clearly ∼ is an equivalence relation. Let Pα denote the equivalence class containing

α ∈ I and #mc := maxα∈I |Pα|. Let MCn denote the event #mc > n. We make the

following claim on #mc.

Claim 6.3.7. For σ ≤ 2n−3, we have

Pr [MCn] ≤ 4σ

2n
.

We are interested in the conditional probability of TColl given ¬MCn. It is clear that for

each (i, j − 1) ∈ I we have
∣∣P(i,j−1)

∣∣ ≤ n, and we have to bound the probability of

C(i,j−1) collisions for at most these many pairs.

Pr [TColl] ≤ Pr [MCn] + Pr [TColl |¬MCn]

1
≤ Pr [MCn] +

∑
(i,j−1)∈I

∑
(i′,j′)∈P(i,j−1)

Pr
[
C(i,j−1) = C(i′,j′)

]
2
≤ Pr [MCn] +

∑
(i,j−1)∈I

∑
(i′,j′)∈P(i,j−1)

1

2n − s(i,j−2)

3
≤ Pr [MCn] +

∑
(i,j−1)∈I

∑
(i′,j′)∈P(i,j−1)

1

2n − σ
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4
≤ Pr [MCn] +

∑
(i,j−1)∈I

n

2n − σ

5
≤ 4σ

2n
+

2nσ

2n
.

Note that, P
(j−2]
i 6= P

(j′−1]
i′ , so the tweaks are distinct, whence the transition from 1 to 2,

where s(i,j−2) denotes the number of (i1, j1) such that P
(j1]
i1

= P
(j−2]
i . Using s(i,j−2) ≤ σ

we have 2 to 3. Using #mc ≤ n, |I| ≤ σ and Claim 5.1 we have 3 to 5.

Proof of Claim 6.3.7: Let #mc = m and for some α ∈ I, let |Pα| = m. For each

(u, v) ∈ Pα, let s(u,v) denote the number of (u′, v′) ∈ I such that P
(v′]
u′ = P

(v]
u . Let us fix

one index, say lexicographically first one, (u1, v1) as our reference index. Then we get a

system of (m − 1) equations of the form {S(u1,v1−1) = S(ua,va−1)}a∈[2...m]. We can argue

that all these equations are independent as P
(va−1]
ua 6= P

(vb−1]
ub where a 6= b ∈ [m]. So, we

have

Pr [#mc = m] ≤
(
σ
m

)
(2n − s(i2,j2)) · · · (2n − s(im,jm))

≤
(
σ
m

)
(2n − σ)m−1

.

Summing over all m ≥ n+ 1, we have

Pr [MCn] =

∞∑
m=n+1

Pr [#mc = m]

1
≤

∞∑
m=n+1

(
σ
m

)
(2n − σ)m−1

2
≤ 1

2

∞∑
m=n+1

(
4σ

2n

)m
3
≤ 4σ

2n
.

From 1 to 2 we use the fact that σ < 2n−1, and n(m − 1) > (n − 1)m whenever m > n.

Using the convergence result on infinite geometric series and assuming σ ≤ 2n−3, we

get the result from 2 to 3.

As a direct consequence of Theorem 6.3.6 and Lemma 6.3.5 we get the following corol-

lary for the BRW-based instantiation of H .

Corollary 6.3.8. If H is defined as in Section 6.3.2.1, and σ ≤ 2n−3, then we have

Advosprp
XTC

Ẽ,H
(q, `, σ, τ) ≤ Advtsprp

Ẽ
(σ, τ ′′) +

9σ2

22n
+

2(n+ 2)σ

2n
.
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6.3.4 Extending XTC to Handle Arbitrary Tweak Lengths

In the following discussion, we extend the initial XTC scheme with BRW based hash

function to handle arbitrary tweak lengths.

• For τ < n, we replace the tweak generating part of H by msbτ (BRWL1(C, S, 0) �
(P ⊕ L3

1)). It can be easily shown that BRWL1(C, S, 0) � (P ⊕ L3
1) is a 6/2n-AXU

hash. Using Proposition 2.3.5, we can establish that msbt(BRWL1(C, S, 0) � (P ⊕
L3

1)) is a 6/2τ -AU hash. Finally, this gives a bound of min(2n/n, 2
n+τ
2 ) block-

queries.

• For τ > n, we already know a 2n block-queries attack (using Theorem 6.3.2)

on XTC. While we cannot improve over it without incorporating significantly

more previous blocks, we can still get a sub-optimal upper bound of 2n/n block-

queries. This is achieved by padding the n-bit tweak generated by the hash func-

tion with zeros to make it τ -bit. Clearly, the previous bounds are directly appli-

cable.

Combining the two cases we conclude that XTC is secure while σ � min(2n/n, 2
n+τ
2 ).



Chapter 7

Security of Cascaded LRW2

In the previous chapter, we discussed online ciphers based on tweakable block ciphers

(TBCs). This chapter studies the security of a popular way of constructing TBCs using

standard block ciphers, called the Cascaded LRW2 or CLRW2. Landecker et al. [123] first

suggested the cascading of two independent LRW2 [125] instances to get a beyond the

birthday bound (BBB) secure TBC, called CLRW2. They proved that CLRW2 is a secure

TBC up to approx. 22n/3 queries. Later, Procter [168] pointed out a flaw in the security

proof, which was subsequently fixed by both Landecker et al. and Procter to recover

the claimed security bounds. Lampe and Seurin [122] studied the ` ≥ 2 independent

cascades of LRW2, and proved that it is secure up to approx. 2
`n
`+2 queries.

In [132], Mennink presented an improved security analysis of CLRW2. The major con-

tribution was an attack in approx. n1/223n/4 queries (see section 7.2.2). Following on

the insights from the attack, he also gave a security proof of the same order under three

assumptions:

1. The hash functions are 4-wise independent AXU.

2. The maximum number of tweak repetitions is restricted to 2n/4.

3. A limited variant of Patarin’s mirror theory [160, 161] is true for q < 23n/4.

Among the three assumptions, the first two are at least plausible. But the last assump-

tion is questionable as barring certain restricted cases, the proof of mirror theory has

several critical gaps which are still open or unproven [54, 58]. In this chapter we ex-

plore the possibility of relaxing the above mentioned assumptions while maintaining a

similar security bound.

129
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7.1 A Note on Patarin’s Mirror Theory

In [160] Patarin defines Mirror theory as a technique to estimate the number of solutions

of linear systems of equalities and linear non equalities in finite groups. In its most

general case, the mirror theory proof is tractable up to the order of 22n/3 security bound,

but it readily becomes complex and extremely difficult to verify, as one aims for the

optimal bound [54, 58]. We remark here that this in no way suggests that the result

is incorrect, and in future, we might even get some independent verifications of the

result.

We restrict ourselves to the binary field B with ⊕ as the group operation. We will use

Mennink and Neves interpretation [133] of mirror theory. For ease of understanding

and notational coherency, we sometime use different parametrization and naming con-

ventions. Let q ≥ 1 and let L be the system of linear equations

{e1 : Y1 ⊕ V1 = λ1, e2 : Y2 ⊕ V2 = λ2, . . . , eq : Yq ⊕ Vq = λq}

where Y q and V q are unknowns, and λq ∈ (B)q are knowns. In addition there are

(in)equality restrictions on Y q and V q, which uniquely determine Ŷ q and V̂ q. We as-

sume that Ŷ q and V̂ q, are indexed in an arbitrary order by the index sets [qY ] and [qV ],

where qY = |Ŷ q| and qV = |V̂ q|. This assumption is without any loss of generality as

this does not affect the system L. Given such an indexing, we can define two surjective

index mappings:

ϕY :

[q]→ [qY ]

i 7→ j if and only if Yi = Ŷj .
ϕV :

[q]→ [qV ]

i 7→ j if and only if Vi = V̂j .

It is easy to verify that L is uniquely determined by (ϕY , ϕV , λ
q), and vice-versa. Con-

sider a labeled bipartite graph G(L) = ([qY ], [qV ], E) associated with L, where E =

{(ϕY (i), ϕV (i), λi) : i ∈ [q]}, λi being the label of edge. Clearly, each equation in L cor-

responds to a unique labeled edge (assuming no duplicate equations). We give three

definitions with respect to the system L using G(L).

Definition 7.1.1 (cycle-freeness). L is said to be cycle-free if and only if G(L) is acyclic.

Definition 7.1.2 (ξmax-component). Two distinct equations (or unknowns) in L are said

to be in the same component if and only if the corresponding edges (res. vertices) in

G(L) are in the same component. The size of any component C in L, denoted ξ(C), is

the number of vertices in the corresponding component of G(L), and the maximum

component size is denoted by ξmax(L) (or simply ξmax).
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Definition 7.1.3 (non-degeneracy). L is said to be non-degenerate if and only if there

does not exist a path of length at least 2 in G(L) such that the labels along the edges on

this path sum up to zero.

Theorem 7.1.4 (Fundamental Theorem of Mirror Theory [160]). Let L be a system of

equations over the unknowns (Ŷ q, V̂ q), that is (i) cycle-free, (ii) non-degenerate, and (iii) ξ2
max ·

max{qY , qV } ≤ 2n. Then, the number of solutions (y1, . . . , yqY , v1, . . . , vqV ) of L, denoted hq,

such that yi 6= yj and vi 6= vj for all i 6= j, satisfies

hq ≥
(2n)qY · (2n)qV

2nq
. (7.1)

A sketchy proof for this theorem is given in [160]. As mentioned before, the proof is

quite involved with some claims remaining open or unproved. On the other hand, the

same paper contains results for various other cases. For instance, for ξ = 2, several sub-

optimal bounds have been shown. By sub-optimal, we mean that a factor of (1− ε), for

some ε > 0, is multiplied to the right hand side of Eq. (7.1). Inspired by this, we give

the following terminology which will be useful in later references to mirror theory.

For ξ ≥ 2, ε > 0, we write (ξ, ε)-restricted mirror theory theorem to denote

the mirror theory result in which the number of solutions, hq, of a system of

equations with ξmax = ξ, satisfies hq ≥ (1− ε) (2n)qY ·(2
n)qV

2nq .

Here ε can be viewed as the degree of deviation from random function behavior. Mirror

theory has been primarily used for bounding the pseudorandomness of some random

system with respect to a random function. Accordingly, one finds a term of the form

2nq in mirror theory bounds. When combined with the coefficient-H technique, we get

an ε term in the distinguishing advantage bound.

In [132], (4, q4/23n)-restricted mirror theory theorem is used. In section 7.4, we study

the (ξ, q4/23n) case, for ξ ∈ {2, 3} and present a variant of mirror theory suitable for

tweakable permutation scenario.

7.2 Revisiting Mennink’s Improved Bound on CLRW2

Recall the notion of `-wise independent XOR universal hash functions defined in Def-

inition 2.3.3 of chapter 2. This notion will be used for the description of CLRW2 (for

` = 2), as well as Mennink’s improved bound on CLRW2 (for ` = 4).
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7.2.1 Description of the Cascaded LRW2 Construction

Let E ∈ BPerm({0, 1}κ,B) be a block cipher. Let H be a hash function family from T to

B. We define the tweakable block cipher LRW2E,H, based on the block cipher E and the

hash function familyH, by the following mapping: ∀(k, h, t,m) ∈ {0, 1}κ ×H× T× B,

LRW2E,H(k, h, t,m) := Ek(m⊕ h(t))⊕ h(t). (7.2)

For r ∈ N, the r-round cascaded LRW2 construction, denoted CLRW2E,H,r, is a cascade

of r independent LRW2 instances, i.e. CLRW2E,H,r is a tweakable block cipher, based

on the block cipher E and the hash function familyH, defined as follows: ∀(kr, hr, t,m) ∈
{0, 1}rκ ×Hr × T× B,

yi :=

LRW2E,H(t,m) for i = 1,

LRW2E,H(t, yi−1) otherwise.

CLRW2E,H,r(k
r, hr, t,m) := yr. (7.3)

The 2-round CLRW2, was first analyzed by Landecker et al. [123], whereas the r > 2

case was studied by Lampe and Seurin [122]. Since we mainly focus on the r = 2 case,

we use the nomenclatures, CLRW2 and cascaded LRW2, interchangeably with 2-round

CLRW2. Figure 7.2.1 gives a pictorial description of the cascaded LRW2 construction.

In [123] the CLRW2 construction was shown to be a BBB secure (up to 22n/3 queries)

Ek1⊕⊕⊕m

h1(t)

⊕⊕⊕

h1(t)⊕ h2(t)

Ek2 ⊕⊕⊕

h2(t)

c
x y

λ

v u

Figure 7.2.1: The cascaded LRW2 construction.

TSPRP, provided the underlying block cipher is an SPRP, and the hash function families

are AXU. However, an attack with matching bounds eluded up until quite recently.

7.2.2 Mennink’s Attack on CLRW2

In [132] Mennink gave an O(n1/223n/4) query attack on CLRW2. The attack is generic

in nature as it does not exploit the weaknesses in the underlying block cipher. Rather

it assumes that the block cipher instances are independent random permutations. Also

the attack works for any hash function. We briefly describe the attack and refer the

readers to [132] for a more concrete and formal description, analysis and experimental

verification of the attack.
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ATTACK DESCRIPTION: Suppose in the transcript generated by a distinguisher, there

exist four queries (t,m1, c1), (t′,m2, c2), (t,m3, c3), and (t′,m4, c4), such that the follow-

ing equations hold:

m1 ⊕ h1(t) = m2 ⊕ h1(t′)

c2 ⊕ h2(t′) = c3 ⊕ h2(t) (7.4)

m3 ⊕ h1(t) = m4 ⊕ h1(t′)

Using notations analogous to Figure 7.2.1, we equivalently have, x1 = x2; u2 = u3;

and x3 = x4. Since x4 ! y4 and v4 ! u4, looking at the equations generated by the

corresponding y and v values, we have v1 = y1 ⊕ λ(t) = y2 ⊕ λ(t) = v2 ⊕ λ(t′)⊕ λ(t) =

v3 ⊕ λ(t)⊕ λ(t′) = y3 ⊕ λ(t′) = v4. This immediately gives u1 = u4, i.e.

c4 ⊕ h2(t′) = c1 ⊕ h2(t). (7.5)

In other words, Eq. (7.5) is implied by the existence of Eq. (7.4), and by combining all

four equations, we have

m1 ⊕m2 = m3 ⊕m4 = α,

c1 ⊕ c4 = c2 ⊕ c3 = β,

where α = h1(t)⊕ h1(t′) and β = h2(t)⊕ h2(t′). While the distinguisher does not know

α and β, it can exploit the relations:

m1 ⊕m2 = m3 ⊕m4, (7.6)

c1 ⊕ c4 = c2 ⊕ c3, . (7.7)

If for some value a we have about 2n many quadruples satisfying

m1 ⊕m2 = m3 ⊕m4 = a, (7.8)

then, for CLRW2, the expected number of solutions for Eq. (7.6)-(7.7) is approximately

2 for a = α. On the other hand, for Π̃, the expected number of solutions is always close

to 1 for any a ∈ B. In [132], it has been shown that approximately 2n1/223n/4 queries

are sufficient for the distinguisher to ensure that Eq. (7.8) has about 2n solutions. Given

these many queries the distinguisher can attack by observing the number of solutions

for Eq. (7.6)-(7.7) for each value of a.
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7.2.3 Mennink’s Proof Approach

The proof in [132] applies coefficient-H technique coupled with mirror theory. The

main focus is to identify a suitable class of bad events on (xq, uq), where q is the num-

ber of queries, which makes mirror theory inapplicable. Crudely, the bad events corre-

spond to cases where for some query there is no randomness left (in the sampling of yq

and vq) in the ideal world. Given a good transcript, mirror theory is applied to bound

the number of solutions of the system of equation {Yi ⊕ Vi = λi : i ∈ [q]}, where Yi and

Vi are unknowns satisfying xq ! Y q and V q ! uq, and λq is fixed. The proof relies

on three major assumptions:

Assumption 1. H is AXU4 hash function family.

Assumption 2. For any t′ ∈ T, µt′ = µ(tq, t′) ≤ γ = 2n/4.

Assumption 3.
(

4, q
4

23n

)
-restricted mirror theory theorem is correct.

TRANSCRIPT GRAPH: A graphical view on xq and uq was used to characterize all bad

events. Basically, each transcript is mapped to a unique bipartite graph on xq, uq, as

defined in Definition 7.2.1.

Definition 7.2.1 (Transcript Graph). A transcript graph G = (X q,Uq, Eq) associated

with (xq, uq), denoted G(xq, uq), is defined as a bipartite graph with vertex sets X :=

{(xi, 0) : i ∈ [q]}; U := {(ui, 1) : i ∈ [q]}; and edge set E := {((xi, 0), (ui, 1)) : i ∈ [q]}.
We also associate the value λi = h1(ti)⊕ h2(ti) with edge ((xi, 0), (ui, 1)) ∈ E .

Note that, the graph may not be simple, i.e., it can contain parallel edges. Here X and

U are just the disjointified representations of xq and uq, respectively. For all practical

purposes we may drop the 0 and 1 for (x, 0) ∈ X and (u, 1) ∈ U , as they can be easily

distinguished. Further, for some i, j ∈ [q], if xi = xj (or ui = uj) , then they share the

same vertex xi = xj = xi,j (or ui = uj = ui,j). The event xi = xj and ui = uj , although

extremely unlikely, will lead to a parallel edge in G. Finally each edge (xi, ui) ∈ E
corresponds to a query index i ∈ [q], so we can equivalently view (and call) the edge

(xi, ui) as index i. Figure 7.2.2 gives an example graph for G.

x1

u1 u2

x2,3

u3

x4

u4

x5

u5,6

x6,7

u7,8

x8

u9 u10

x9,...,i

ui,i+1

xi+1

. . .. . .. . .

xi+2 xi+3

ui+2,...,q−4

xq−4

. . .. . .. . .
xq−3,q−2

uq−2,q−1

xq−1,q

uq−3,q

Figure 7.2.2: A possible transcript graph G(xq, uq) associated with (xq, uq). Vertices in
xq are colored blue and vertices in uq are colored red, for illustration only.

BAD TRANSCRIPTS: A transcript graph G(xq, uq) is called bad if:
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1. it has a cycle of size = 2.

2. it has two adjacent edges i and j such that λi ⊕ λj = 0.

3. it has a component of length ≥ 4 edges.

All subgraphs in Figure 7.2.2, except the first two from left, are considered bad in [132].

Conditions 1 and 2 correspond to the cases which might lead to degeneracy in the

real world. Condition 3 may lead to a cycle of length ≥ 4 edges. The non-fulfillment

of condition 1,2 and 3 satisfies the cycle-free and non-degeneracy properties required

in mirror theory. It also bounds ξmax ≤ 4. Condition 1 and 2 contribute small and

insignificant terms and can be ignored from this discussion. We focus on the major

bottleneck, i.e. condition 3. The subgraphs corresponding to condition 3 are given in

Figure 7.2.3. Configuration (D), (E), and (F) are symmetric to (A), (B), and (C). So we

can study (A), (B), and (C), and the other three can be similarly analyzed.

(A) (B) (C) (D) (E) (F)

Figure 7.2.3: Possible configuration of size = 4 edge subgraphs. Vertices in xq are col-
ored blue and vertices in uq are colored red, and vertex labels are omitted for brevity.

BOTTLENECK 1: BOUND ON THE PROBABILITY OF (A), (C), (D) AND (F) — This can

be divided into two parts:

(a) Configuration (A) arises for the event

∃∗i, j, k, l such that xi = xj = xk = x`.

This event is upper bounded to q4ε3 using assumption 1 on hash functions. Simi-

lar argument holds for (D).

(b) Configuration (C) (similarly for F) arises for the event

∃∗i, j, k, ` ∈ [q] such that xi = xj = xk ∧ uk = u`.

In this case we can apply assumption 1 (even AXU3 would suffice) to get an upper

bound of q4ε3.

BOTTLENECK 2: BOUND ON THE PROBABILITY OF (B) — Configuration (B) arises for

the event

∃∗i, j, k, l such that xi = xj ∧ uj = uk ∧ xk = x`.
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This is probably the trickiest case, which requires assumption 2, i.e. restriction on tweak

repetition. Specifically consider the case ti = tk and tj = t`. This is precisely the case

exploited in Mennink’s attack on CLRW2 [132] (see subsection 7.2.2). In this case for a

fixed i, j, k, ` the probability is bounded by ε2. There are at most q2 many choices for

(i, j), at most (µti − 1) choices for k and a single choice for ` given i, j and k. Thus the

probability is bounded by q2γε2 (using assumption 2). Similar argument holds for (E).

BOTTLENECK 3: MIRROR THEORY BOUND — The final hurdle is the use of mirror

theory in computation of real world interpolation probability, which requires assump-

tion 3. Yet another issue is the nature of the mirror theory bound. A straightforward

application of mirror theory bound leads to a term of the form

∏
t′∈t̂q(2

n)µt′
(2n)q

(1−O(q/2n)) ,

in the ratio of interpolation probabilities, where
∑

t′∈t̂q µt′ = q. Here the numerator is

due to the tweakable random permutation. In the worst case, µt′ = O(q), which gives a

lower bound of the form 1−q2/2n. But using assumption 2, we get a bound of 1−qγ/2n

as µt′ ≤ γ.

7.2.3.1 Severity of the Assumptions in [132]

Among the three assumptions, assumption 1 and 2 are quite plausible in the sense that

real life use-cases exist for assumption 2 and practical instantiations are possible for

assumption 1. Another point of note is the fact that γ < 2n/4 is imposed only due

to bottleneck 3. Otherwise a better bound of γ < 2n/2 could have been used. While

assumption 1 and 2 are plausible to a large extent, assumption 3 is disputable.

Although the proof in [132] requires the above mentioned assumptions, the proof ap-

proach seems quite simple and in some cases it highlights the bottlenecks in getting

tight security. In the remainder of this chapter, we aim to resolve all the bottlenecks

discussed here, while relaxing all the assumptions made in [132]. Specifically, bottle-

neck 1(a) is incorporated within good transcripts, bottleneck 2 is resolved using the

tools from section 7.3, and bottleneck 3 is resolved using the tools from section 7.4 and

a careful application of the expectation method in section 7.5. The only unresolved

bottleneck is 1(b) for which we will use the AXU3 assumption on hash functions.
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7.3 The Alternating Collisions and Events Lemmata

Let H = {h | h : T → B} be an ε-AU hash function family. A pair (ti, tj) is called a

colliding pair for some h ∈ H if h(ti) = h(tj). The probability of having at least one

colliding pair from q distinct elements tq ∈ (T )q for a randomly chosen hash function

H←$H is at most
(
q
2

)
· ε. This is straightforward from the union bound.

Suppose H1,H2←$H are two independently drawn universal hash functions and tq ∈
(T )q. Then, by applying independence and union bound, we have

Pr [∃∗i, j, k ∈ [q], H1(ti) = H1(tj) ∧ H2(tj) = H2(tk)] ≤ q(q − 1)(q − 2) · ε2.

Now we go one step further. We would like to bound the probability of the following

event:

∃∗i, j, k, l ∈ [q], H1(ti) = H1(tj) ∧ H2(tj) = H2(tk) ∧ H1(tk) = H1(tl).

For any fixed distinct i, j, k and l, we cannot claim that the probability of the event

H1(ti) = H1(tj) ∧ H2(tj) = H2(tk) ∧ H1(tk) = H1(tl) is ε3 as the first and last event are

no longer independent. In this section we show how we can get an improved bound

even in the dependent situation. In particular, we prove the following lemma.

Lemma 7.3.1 (Alternating Collisions Lemma). Suppose H1,H2←$H are two independently

drawn ε-universal hash functions and tq ∈ (T )q. Then,

Pr [∃∗ i, j, k, l ∈ [q], H1(ti) = H1(tj) ∧ H1(tk) = H1(tl) ∧ H2(tj) = H2(tk)] ≤ q2ε1.5.

Proof. For any h ∈ H, we define the following useful set:

Ih = {(i, j) : h(ti) = h(tj)}.

Let us denote the size of the above set by Ih. So, Ih is the number of colliding pairs for

the hash functions h. We also define a set H≤ = {h : Ih ≤ 1√
ε
} which collects all hash

functions having a small number of colliding pairs. We denote the complement set by

H>. Now, by using double counting of the set {(h, i, j) : h(ti) = h(tj)}we get

∑
h

Ih ≤ q(q − 1) · ε× |H|. (7.9)

Basically for every h, we have exactly Ih many choices of (i, j) and so the size of the

set {(h, i, j) : h(ti) = h(tj)} is exactly
∑

h Ih. On the other hand, for any i < j ∈ [q],

there are at most ε · |H|many hash functions h, such that (ti, tj) is a colliding pair for h.
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This follows from the definition of the universal hash function. From Eq. (7.9) and the

definition ofH≤, we have

|H>|√
ε

+
∑
h∈H≤

Ih ≤
∑
h

Ih ≤ q(q − 1) · ε · |H|. (7.10)

Let E denote the event that there exists distinct i, j, k, l such that H1(ti) = H1(tj) ∧
H1(tk) = H1(tl) ∧ H2(tj) = H2(tk). Now we proceed to bound the probability of this

event.

Pr [E] =
∑
h

Pr [E ∧ H1 = h]

=
∑
h

Pr [H1 = h]× Pr [E ∧ H1 = h | H1 = h]

≤
∑
h

Pr [H1 = h]×min{1, I2
h · ε}

= Pr [H1 ∈ H>] +
∑
h∈H≤

Pr [H1 = h] · I2
h · ε

≤ |H>|
|H|

+
∑
h∈H≤

Ih ·
√
ε

|H|
.

=

√
ε

|H|
×

 |H>|√
ε

+
∑
h∈H≤

Ih


≤ q(q − 1)ε1.5.

We justify the first inequality. Let Ih be the set of pairs (i, j) with h1(ti) = h1(tj) (i.e.

|Ih| = Ih). Given H1 = h, the probability of the event E is same as the probability of the

following event:

∃∗(i, j), (k, l) ∈ Ih, H2(tj) = H2(tk).

There are at most I2
h many pairs of pairs and for each pair of pairs and the collision

probability of H2(tj) = H2(tk) is at most ε. So probability of the above event can be at

most min{1, I2
h · ε}. The last inequality follows from Eq. (7.10).

Now we generalize the above result for a more general setting which will also be used

in this chapter. The proof of this result is similar to the previous proof.

Lemma 7.3.2 (Alternating Events Lemma). Suppose for all i < j ∈ [q], Ei,j are events,

possibly dependent. Each event holds with probability at most ε. For any distinct i, j, k, l,

Fi,j,k,l are events which holds with probability at most ε′. Moreover, the collection of events

(Fi,j,k,l)i,j,k,l is independent with the collection of event (Ei,j)i,j . Then,

Pr [∃∗i, j, k, l ∈ [q], Ei,j ∧ Ek,l ∧ Fi,j,k,l] ≤ q2 · ε ·
√
ε′.
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Note that, Lemma 7.3.1 is a direct corollary of the above Lemma (the event Ei,j denotes

that (ti, tj) is a colliding pair of H1 and Fi,j,k,l denotes that (tj , tk) is a colliding pair of

H2).

Proof. We follow a similar proof approach as considered in Lemma 7.3.1. We define a

indicator random vector I = (Ii,j)i<j∈[q] where Ii,j takes value 1 if Ei,j holds, otherwise

zero. The sample space of the random vector is Ω, the set of all binary vectors indexed

by all pairs (i, j). For any vector w ∈ Ω, we write #w to represent the number of 1’s

appeared in w. Let Ω≤ = {w : #w ≤ 1√
ε′
} and its complement set by Ω>.

We define a random variable N =
∑

i 6=j Ii,j , i.e., the number of E-events hold. As Ei,j

holds with probability at most ε,

q(q − 1)ε ≥ Ex [N]

=
∑
w

#w · Pr [I = w]

≥
∑
w∈Ω≤

#w · Pr [I = w] +
Pr [I ∈ Ω>]√

ε′
. (7.11)

Let E denote the event that there exists distinct i, j, k, l such that Ei,j ∧ Ek,l ∧ Fi,j,k,l.

Now we proceed for bounding the probability of the event.

Pr [E] =
∑
w

Pr [E ∧ I = w]

=
∑
w

Pr [I = w]× Pr [E ∧ I = w | I = w]

≤
∑
w

Pr [I = w]×min{1, (#w)2 · ε′}

= Pr [I ∈ Ω>] +
∑
w∈Ω≤

Pr [I = w] · (#w)2 · ε′

≤ Pr [I ∈ Ω>] +
∑
w∈Ω≤

Pr [I = w] ·#w ·
√
ε′

=
√
ε′ ·

 ∑
w∈Ω≤

#w · Pr [I = w] +
Pr [I ∈ Ω>]√

ε′


≤ q(q − 1)ε ·

√
ε′.

The first inequality follows exactly by the same reason argued in the proof of Lemma

7.3.1. The last inequality follows from Eq. (7.11). This completes the proof.
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7.4 Mirror Theory for Tweakable Permutations

As evident from bottleneck 4 of section 7.2.3, a straightforward application of mirror

theory bound would lead to a sub-optimal bound. In order to circumvent this sub-

optimality, [132] uses a restriction on tweak repetitions (assumption 2 of section 7.2.3).

Specifically, a bound of the form O(q/23n/4) requires µ(tq, t′) < 2n/4 for all t′ ∈ t̂q,

where tq is the q-tuple denoting the tweaks used in the q queries. In order to avoid this

assumption, we need a different approach.

A closer inspection of the mirror theory proof reveals that we can actually avoid the

restrictions on tweak repetitions. In fact, rather surprisingly, we will see that tweak

repetitions are actually helpful in the sense that mirror theory bound is good. In the

remainder of this section, we develop a modified version of mirror theory, apt for ap-

plications in tweakable permutation settings. We will only consider ξmax(L) = 3 case.

7.4.1 General setup and notations

Following the notations and definitions from section 7.1, consider a system of equation

L with ξmax(L) = 3. For brevity, we simply write “sub-system of L with ξ = x”, for

some x ∈ {2, 3}, to denote the sub-system of L consisting of equations belonging to

components with ξ = x.

Following this nomenclature, let C1 denote the sub-system of L with ξ = 2. Let C2 (res.

C3) denote the sub-system of L with ξ = 3 such that for i ∈ [q], if equation ei ∈ C2 (res.

ei ∈ C3) then µ(V q, Vi) = 1 (res. µ(Y q, Yi) = 1).

For i ∈ [3], let ci = |Ci| and qi be the number of equations in ci, i.e. q1 = c1, q2 = 2c2,

q3 = 2c3, and q1 + q2 + q3 = q. We also write c = c2 + c3. For i ∈ [q], let δi := µ(λi−1, λi),

where δ1 = 0 by convention.

Note that, the equations in L can be arranged in any arbitrary order without affecting

the number of solutions. For the sake of simplicity, we fix the following order on L:

Y1 ⊕ V1 = λ1

...

Yq1 ⊕ Vq1 = λq1

Yq1+1 ⊕ Vq1+1 = λq1+1

...

Yq1+q2 ⊕ Vq1+q2 = λq1+q2

Yq1+q2+1 ⊕ Vq1+q2+1 = λq1+q2+1

...

Yq1+q2+q3 ⊕ Vq1+q2+q3 = λq1+q2+q3

︸ ︷︷ ︸
C1

︸ ︷︷ ︸
C2

︸ ︷︷ ︸
C3
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where for all i ∈ [c1], j ∈ [c2], Yq1+2i−1 = Yq1+2i, and Vq1+q2+2j−1 = Vq1+q2+2j , other-

wise all Y ’s are pairwise distinct and V ’s are pairwise distinct. Therefore, we get the

following equalities on ϕY and ϕV :

1. for all i ∈ [c2], ϕY (q1 + 2i− 1) = ϕY (q1 + 2i).

2. for all i ∈ [c3], ϕV (q1 + q2 + 2i− 1) = ϕV (q1 + q2 + 2i).

Also, for all i ∈ [c], λq1+2i−1 6= λq1+2i. So all the equations in C1 come first, followed

by all the equations in C2, and finally all the equations in C3. Now, our goal is to give a

lower bound on the number of solutions of L, such that the Ŷi values are pairwise dis-

tinct and V̂i values are pairwise distinct. More formally we aim to prove the following

result.

Theorem 7.4.1. Let L be the system of linear equations satisfying the restrictions as above in
section 7.4.1 with q < 2n−2. Then the number of solutions (y1, . . . , yqY , v1, . . . , vqV ) of L,
denoted hq, such that yi 6= yj and vi 6= vj , for all i 6= j, satisfies:

hq ≥
(

1− 604q2c

22n
− 128qc

22n
− 192q3c

23n
− 36q4

23n
− 204q2

22n
− 64q3

23n
− 56q

22n

)
(2n)q1+c2+q3(2n)q1+q2+c3∏

λ′∈λ̂q (2n)µ(λq,λ′)
.

The following corollary is just a simplified variant of Theorem 7.4.1 that is more suitable

for applications. We will use this variant later on in our main result on CLRW2.

Corollary 7.4.2. Let L be the system of linear equations satisfying the restrictions as above

in section 7.4.1 with q < 2n−2. Then the number of solutions (y1, . . . , yqY , v1, . . . , vqV ) of L,

denoted hq, such that yi 6= yj and vi 6= vj , for all i 6= j, satisfies:

hq ≥
(

1− 780q2c

22n
− 100q4

23n
− 260q2

22n

)
(2n)q1+c2+q3(2n)q1+q2+c3∏

λ′∈λ̂q(2
n)µ(λq ,λ′)

.

We note here that the bound in Theorem 7.4.1 and Corollary 7.4.2 are parametrized in

q and c. This is a bit different from the traditional mirror theory bounds. Further, we

note that the bounds in Theorem 7.4.1 and Corollary 7.4.2, become 1 − O(q4/23n) in

average case, when the expected value of c is O(q2/2n). The proof of Theorem 7.4.1

uses an inductive approach similar to the one in [160]. We postpone the complete proof

to section 7.6.

7.5 Improved Security Bound of CLRW2

Based on the tools we developed in section 7.3 and 7.4, we now show that the CLRW2

construction achieves security up to the query complexity approximately 23n/4, given
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that the underlying hash functions are AXU3. Given Mennink’s attack [132] (see section

7.2.2) in roughly these many queries we can conclude that the bound is tight.

Theorem 7.5.1. Let κ, τ, n ∈ N and ε > 0. Let E ∈ BPerm({0, 1}κ,B), and let H be an

ε-AXU3 hash function family from T to B. Consider

CLRW2E,H : {0, 1}2κ ×H2 × T× B→ B.

For q ≤ 2n−2 and t > 0, the TSPRP security of CLRW2E,H against A(q, t) is given by

Advtsprp
CLRW2E,H

(q, t) ≤ 2Advsprp
E (q, t′) + ∆,

where t′ = O(t+ qtH), tH being the time complexity for computing the hash functionH, and

∆ ≤ 780q4ε

22n
+

100q4

23n
+

260q2

22n
+ 2q2ε2 + 2q2ε1.5 + q4ε3 +

8q2ε

2n/2
+

4q4ε2

2n
. (7.12)

On putting ε = 1/2n, in Eq. (7.12) and further simplifying, we get

Corollary 7.5.2. For q ≤ 2n−2 and ε = 1
2n , we have

Advtsprp
CLRW2E,H

(q, t) ≤ 2Advsprp
E (q, t′) +

885q4

23n
+

10q2

23n/2
+

262q2

22n
. (7.13)

Specifically, the advantage is negligible up to q = min(2
3n
4
−2.5, 2n−4.5) queries.

PROOF OVERVIEW — The proof of Theorem 7.5.1 employs the Expectation method

(see Lemma 2.2.1) coupled with an adaptation of (3, q4/23n)-restricted mirror theory

theorem [160] in tweakable permutation settings. While our use of mirror theory is

somewhat inspired by its recent use in [132], in contrast to [132], we apply the modified

version of mirror theory developed in section 7.4, and that too for a restricted subset of

queries. The alternating collisions lemma of section 7.3 is used to bound the probability

of the most crucial bad event (Bottleneck 2 in section 7.2.3). The complete proof of

Theorem 7.5.1 is given in the remainder of this section.

7.5.1 Initial Step

Consider the instantiation CLRW2EK1
,EK2

,H1,H2 of CLRW2E,H, where K1, K2, H1, H2 are

independent and (K1,K2)←$ ({0, 1}κ)2, (H1,H2)←$H2. As the first step, we switch to

the information-theoretic setting, i.e. we replace (EK1 ,EK2) with (Π1,Π2)←$ Perm(B)2.

For the sake of simplicity, we write the modified instantiation CLRW2Π1,Π2,H1,H2 as
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CLRW2, i.e. without any parametrization. This switching is done via a standard hybrid

argument that incurs a cost of 2Advsprp
E (q, t′) where t′ = O(t+ qtH). Thus, we have

Advtsprp
CLRW2E,H

(q, t) ≤ 2Advsprp
E (q, t′) + Advtsprp

CLRW2(q). (7.14)

So, in Eq. (7.14), we have to give an upper bound on Advtsprp
CLRW2(q). At this point, we

are in the information-theoretic setting. In other words, we consider computationally

unbounded distinguisher A . Without loss of generality, we assume that A is deter-

ministic and non-trivial. Under this setup, we are now ready to apply the expectation

method.

7.5.2 Oracle Description

The two oracles of interest are: O1, the real oracle, that implements CLRW2; and, O0,

the ideal oracle, that implements Π̃←$ BPerm(τ, n). We consider an extended version

of these oracles, the one in which they release some additional information. We use

notations analogously as given in Figure 7.2.1 to describe the transcript generated by

A ’s interaction with its oracle.

7.5.2.1 Description of the Real Oracle, O1

The real oracle O1 faithfully runs CLRW2. We denote the transcript random variable

generated by A ’s interaction withO1 by the usual notation Θ1, which is a 10-ary q-tuple

(Tq,Mq,Cq,Xq,Yq,Vq,Uq, λq,H1,H2),

defined as follows: The initial transcript consists of (Tq,Mq,Cq), where for all i ∈ [q]:

Ti: i-th tweak value, Mi: i-th plaintext value, Ci: i-th ciphertext value

where Cq = CLRW2(Tq,Mq). At the end of the query-response phase O1 releases some

additional information (Xq,Yq,Vq,Uq, λq,H1,H2), where for all i ∈ [q]:

• (Xi,Yi): i-th input-output pair for Π1,

• (Vi,Ui): i-th input-output pair for Π2,

• λi: i-th internal masking, H1,H2: the hash keys.

Note that, Xq, Uq, and λq are completely determined by the hash keys H1,H2, and the

initial transcript (Tq,Mq,Cq). But, we include them anyhow to ease the analysis.
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7.5.2.2 Description of the ideal oracle, O0

The ideal oracle O0 has access to Π̃. Since O1 releases some additional information, O0

must generate these values as well. The ideal transcript random variable Θ0 is also a

10-ary q-tuple

(Tq,Mq,Cq,Xq,Yq,Vq,Uq, λq,H1,H2),

defined below. Note that, we use the same notation to represent the variables of tran-

scripts in the both world. However, the probability distributions of the these would be

determined from their definitions. The initial transcript consists of (Tq,Mq,Cq), where

for all i ∈ [q]:

Ti: i-th tweak value, Mi: i-th plaintext value, Ci: i-th ciphertext value,

where Cq = Π̃(Tq,Mq). Once the query-response phase is overO0 samples (H1,H2)←$H2

and computes Xq,Uq, λq, where for all i ∈ [q]:

Xi := H1(Ti)⊕Mi, Ui := H2(Ti)⊕ Ci, λi := H1(Ti)⊕ H2(Ti).

This means that Xq, Uq, and λq are defined honestly. Given the partial transcript Θ′0 :=

(Tq,Mq,Cq,Xq,Uq, λq,H1,H2) we wish to characterize the hash key H := (H1,H2) as

good or bad. We write Hbad for the set of bad hash keys, and Hgood = H2 \ Hbad. We

say that a hash key H ∈ Hbad (or H is bad) if and only if one of the following predicates

is true:

1. H1: ∃∗i, j ∈ [q] such that Xi = Xj ∧ Ui = Uj .

2. H2: ∃∗i, j ∈ [q] such that Xi = Xj ∧ λi = λj .

3. H3: ∃∗i, j ∈ [q] such that Ui = Uj ∧ λi = λj .

4. H4: ∃∗i, j, k, ` ∈ [q] such that Xi = Xj ∧ Uj = Uk ∧ Xk = X`.

5. H5: ∃∗i, j, k, ` ∈ [q] such that Ui = Uj ∧ Xj = Xk ∧ Uk = U`.

6. H6: ∃∗i, j, k, ` ∈ [q] such that Xi = Xj = Xk ∧ Uk = U`.

7. H7: ∃∗i, j, k, ` ∈ [q] such that Ui = Uj = Uk ∧ Xk = X`.

CASE 1: H IS BAD — If the hash key H is bad, then Yq and Vq values are sampled

arbitrarily.

CASE 2: H IS GOOD — To characterize the transcript corresponding to a good hash

key it will be useful to study a graph, similar to the one in section 7.2, associated with



Chapter 7. Security of CLRW2 145

(Xq,Uq). Specifically, we consider the random transcript graph G(Xq,Uq) arising due to

H ∈ Hgood. Lemma 7.5.3 and Figure 7.5.1 characterizes the different types of possible

components in G(Xq,Uq). Note that, type-4 and type-5 graphs are the same as config-

uration (A) and (D) of Figure 7.2.3, for size ≥ 4 edges. These graphs are considered as

bad in [132], whereas we allow such components.

type-1 type-2 type-3
. . .. . .. . .

type-4

. . .. . .. . .

type-5 type-6

Figure 7.5.1: Enumerating all possible types of components of a transcript graph cor-
responding to a good hash key: type-1 is the only possible component of size = 1 edge;
type-2 and type-3 are the only possible components of size = 2 edges; type-4, type-5
and type-6 are the only possible components of size = 3 edges; type-4 and type-5 can

have size > 3 edges, and type-6 can have degree 2 vertices in both X and U .

Lemma 7.5.3. The transcript graph G corresponding to (Xq,Uq) generated by a good hash key

H has the following properties:

1. G is simple, acyclic and has no isolated vertices.

2. G has no two adjacent edges i and j such that λi ⊕ λj = 0.

3. G has no subgraph G′ of size≥ 4 edges such that ∃X ∈ X and ∃U ∈ U with deg(X),deg(U) ≥
2 and (X,U) ∈ E(G′).

In fact the all possible types of components of G are enumerated in Figure 7.5.1.

Proof. Property 1 holds by definition and the non-existence of bad hash key conditions

1, 4, and 5. Property 2 holds due to the non-existence of bad hash key conditions 2, and

3. Property 3 holds due to the non-existence of bad hash key conditions 4, 5, 6, and 7.

It is easy to verify that given Property 1, 2, and 3, Figure 7.5.1 enumerates all possible

types of components of G.

In what follows we describe the sampling of Yq and Vq when H ∈ Hgood. We collect the

indices i ∈ [q] corresponding to the edges in all type-1, type-2, type-3, type-4, type-5

and type-6 components, in the index sets I1, I2, I3, I4, I5, and I6, respectively. Clearly,

the six sets are disjoint, and [q] = I1tI2tI3tI4tI5tI6. Let I = I1tI2tI3. Consider

the system of equation

L = {Yi ⊕ Vi = λi : i ∈ I},
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where Yi = Yj (res. Vi = Vj) if and only if Xi = Xj (res. Ui = Uj) for all i, j ∈ [q]. The

solution set of L is precisely the set

S = {(yI , vI) : yI! XI ∧ vI! UI ∧ yI ⊕ vI = λI}.

Given these definitions, the ideal oracle O0 samples (Yq,Vq) as follows:

• (YI ,VI)←$S, i.e. O0 uniformly samples one valid assignment from the set of all

valid assignments.

• Let G \ I denote the subgraph of G after the removal of edges and vertices corre-

sponding to i ∈ I. For each component C of G \ I:

– Let (Xi,Ui) be the edge in C with the smallest index i ∈ [q] \ I. Then Yi←$B
and Vi = Yi ⊕ λi.

– For all other indices i′ ∈ [q]\I, corresponding to edges (Xi′ ,Ui′) ∈ C, (Yi′ ,Vi′)

is defined in the following way:

∗ Suppose i, i′ ∈ I4 (res. I5), then Yi′ = Yi (res. Vi′ = Vi), and Vi′ = Yi⊕λi′
(res. Yi′ = Vi ⊕ λi′).

∗ Suppose i, i′ ∈ I6, and assume that i corresponds to the edge where Xi =

Xi′ and Ui = Ui′′ , where i, i′, i′′ are the three edges in the component.

Then Yi′ = Yi and Vi′ = Yi ⊕ λi′ . The other cases can be handled in a

similar fashion.

At this point, Θ0 = (Tq,Mq,Cq,Xq,Yq,Vq,Uq, λq,H1,H2) is completely defined. In this

way we maintain both the consistency of equations of the form Yi ⊕ Vi = λi (as in

the case of real world), and the permutation consistency within each component, when

H ∈ Hgood. However, there might be collisions among Y or V values from different

components.

7.5.3 Definition and Analysis of Bad Transcripts

Given the description of the transcript random variable corresponding to the ideal

oracle we can define the set of attainable transcripts Ω as the set of all tuples ω =

(tq,mq, cq, xq, yq, vq, uq, λq, h1, h2), where tq ∈ (T)q; mq, cq, yq, vq ∈ (B)q; (h1, h2) ∈ H2;

xq = h1(tq)⊕mq; yq = h2(tq)⊕ cq; λq = h1(tq)⊕ h2(tq); and (tq,mq)! (tq, cq).

Our bad transcript definition is inspired by two requirements:
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1. Eliminate all xq, uq, and λq tuples such that yq and vq are trivially restricted by

way of linear dependence. For example, a cycle in the transcript graph would

lead to such a restriction.

2. Eliminate all xq, uq, yq, vq tuples such that xq 6! yq or uq 6! vq.

Among the two, requirement 2 is trivial as xq ! yq and uq ! vq is always true for

real world transcript. Requirement 1 is more of a technical one that helps in the ideal

world sampling of yq and vq.

BAD TRANSCRIPT DEFINITION: We first define certain attainable transcripts as bad

depending upon the characterization of hash keys. Inspired by the ideal world de-

scription, we say that a hash key (h1, h2) ∈ Hbad (or (h1, h2) is bad) if and only if the

following predicate is true:

H1 ∨ H2 ∨ H3 ∨ H4 ∨ H5 ∨ H6 ∨ H7.

We say that ω is hash induced bad transcript, if (h1, h2) ∈ Hbad. We write this event as

BAD-HASH, and by a slight abuse of notations,1 we have

BAD-HASH =
7⋃
i=1

Hi. (7.15)

This takes care of the first requirement. For the second one we have to enumerate all

the conditions which might lead to xq 6! yq or uq 6! vq. Since we sample arbitrarily

when the hash key is bad, we assume that the transcript is trivially inconsistent in this

case. For good hash keys, if xi = xj (or ui = uj) then we always have yi = yj (res.

vi = vj); hence the inconsistency will not arise. So, given that the hash key is good, we

say that ω is sampling induced bad transcript, if one of the following conditions is true:

for some α ∈ [6] and β ∈ [α . . . 6], we have

• Ycollαβ : ∃i ∈ Iα, j ∈ Iβ , such that xi 6= xj ∧ yi = yj , and

• Vcollαβ : ∃i ∈ Iα, j ∈ Iβ , such that ui 6= uj ∧ vi = vj ,

where Ii is defined as before in section 7.5.2. By varying α and β over all possible

values, we get all 42 conditions which might lead to xq 6! yq or uq 6! vq. Here

we remark that some of these 42 conditions are never satisfied due to the sampling

mechanism prescribed in section 7.5.2. These are Ycoll11, Ycoll12, Ycoll13, Ycoll22,

Ycoll23, Ycoll33, Vcoll11, Vcoll12, Vcoll13, Vcoll22, Vcoll23, and Vcoll33. We listed

them here only for the sake of completeness. We write the combined event that one of

1We use the notation Hi to denote the event that the predicate Hi is true.
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the 42 conditions hold as BAD-SAMP. Again by an abuse of notations, we have

BAD-SAMP =
⋃

α∈[6],β∈[α...6]

(Ycollαβ ∪ Vcollαβ) . (7.16)

Finally, a transcript ω is called bad, i.e. ω ∈ Ωbad, if it is either a hash or a sampling

induced bad transcript. All other transcripts are called good.

BAD TRANSCRIPT ANALYSIS: We analyze the probability of realizing a bad transcript

in the ideal world. By definition, this is possible if and only if one of BAD-HASH or

BAD-SAMP occurs. So, we have

εbad = Pr [Θ0 ∈ Ωbad] = Pr
Θ0

[BAD-HASH ∪ BAD-SAMP]

= Pr
Θ0

[BAD-HASH]︸ ︷︷ ︸
εhash

+ Pr
Θ0

[BAD-SAMP]︸ ︷︷ ︸
εsamp

. (7.17)

Lemma 7.5.4 upper bounds εhash to 2q2ε2+2q2ε1.5+q4ε3 and Lemma 7.5.5 upper bounds

εsamp to 8q2ε2−n/2 + 4q4ε22−n. Substituting these values in Eq. (7.17), we get

εbad ≤ 2q2ε2 + 2q2ε1.5 + q4ε3 +
8q2ε

2n/2
+

4q4ε2

2n
. (7.18)

Lemma 7.5.4. εhash ≤ 2q2ε2 + 2q2ε1.5 + q4ε3.

Proof. Using Eq. (7.15) and (7.17), we have

εhash = Pr [H1 ∪ H2 ∪ H3 ∪ H4 ∪ H5 ∪ H6 ∪ H7] ≤
7∑
i=1

Pr [Hi].

H1 is true if for some distinct i, j both Xi = Xj , and Ui = Uj . Now Ti = Tj =⇒ Mi 6=
Mj . Hence Xi 6= Xj and H1 is not true. So suppose Ti 6= Tj . Then for a fixed i, j we

get an upper bound of ε2 as H is ε-AXU, and we have at most
(
q
2

)
pairs of i, j. Thus,

Pr [H1] ≤
(
q
2

)
ε2. Following a similar line of argument one can bound Pr [H2] ≤

(
q
2

)
ε2 and

Pr [H3] ≤
(
q
2

)
ε2.

In the remaining, we bound the probability of H4 and H6, while the probability of H5

and H7 can be bounded analogously. For any function f : T ∈ B, let f ′ : T × B → B be

defined as f ′(t,m) = f(t) ⊕m. So Xi = H′1(Ti,Mi), and Ui = H′2(Ti,Ci), for all i ∈ [q].

It is easy to see that H′b is ε-universal if Hb is ε-AXU for b ∈ {0, 1}. Using the renewed

description, H4 is true if for some distinct i, j, k, `,

H′1(Ti,Mi) = H′1(Tj ,Mj) ∧ H′2(Tj ,Cj) = H′2(Tk,Ck) ∧ H′1(Tk,Mk) = H′1(T`,M`).
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Since (ti,mi) 6= (tj ,mj) and (ti, ci) 6= (tj , cj) for distinct i and j, we can apply the

alternating collisions lemma of Lemma 7.3.1 to get Pr [H4] ≤ q2ε1.5.

For H6 we use the AXU3 property of H1. Basically for some distinct i, j, k the probability

that H′1(Ti,Mi) = H′1(Tj ,Mj) = H′1(Ti,Mi) is upper bounded by ε2 (as H1 is ε-AXU3

hash). Now for each such triple, the probability that H′2(Tk,Ck) = H′2(T`,C`) is upper

bounded by ε for a fixed `. We have at most
(
q
4

)
such i, j, k, ` and hence Pr [H6] ≤

(
q
4

)
ε3.

The result follows by summing up all the individual probabilities followed by some

algebraic simplifications.

Lemma 7.5.5. εsamp ≤
8q2ε

2n/2
+

4q4ε2

2n
.

Proof. Using Eq. (7.16) and (7.17), we have

εsamp = Pr

 ⋃
α∈[6],β∈[α...6]

(Ycollαβ ∪ Vcollαβ)


≤
∑
α∈[6]

∑
β∈[α...6]

(
Pr [Ycollαβ] + Pr [Vcollαβ]

)
.

We bound the probabilities of the events on the right hand side in groups as given

below:

Bounding
∑

α∈[3],β∈[α...3] Pr [Ycollαβ] + Pr [Vcollαβ]: Recall that the sampling of Y

and V values is always done consistently for indices belonging to I = I1 t I2 t I3.

Hence,

∑
α∈[3],β∈[α...3]

Pr [Ycollαβ] + Pr [Vcollαβ] = 0. (7.19)

Bounding
∑

β∈{4,5} Pr [Ycoll1β] + Pr [Vcoll1β]: Let’s consider the event Ycoll14, which

translates to there exist indices i ∈ I1 and j ∈ I4 such that Xi 6= Xj ∧ Yi = Yj . Since

j ∈ I4, there must exist k, ` ∈ I4\{j}, such that Xj = Xk = X`. To bound the probability

of Ycoll14, we can thus look at the joint event

∃i ∈ I1, ∃∗j, k, ` ∈ I4, such that Yi = Yj ∧ Xj = Xk ∧ Xk = X`.

Note that, the event Yi = Yj is independent of Xj = Xk ∧Xk = X`, as both Yi and Yj are

sampled independent of the hash key. Thus, we get

Pr [Ycoll14] = Pr [∃i ∈ I1,∃∗j, k, ` ∈ I4, such that Yi = Yj ∧ Xj = Xk ∧ Xk = X`]

=
∑
i∈I1

∑
j<k<`∈I4

Pr [Yi = Yj ] · Pr [Xj = Xk ∧ Xk = X`]
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≤ q
(
q

3

)
ε2

2n
,

where the last inequality follows from the uniform randomness of Yj and the ε-AXU3

property of H1 (by viewing Xm = Hm(Tm) ⊕Mm for m ∈ {j, k, `}). We can bound the

probabilities of Ycoll15, Vcoll14, Vcoll15 in a similar manner as in the case of Ycoll14.

So we skip the argumentation for these cases, and summarize the probability for this

group as ∑
β∈{4,5}

Pr [Ycoll1β] + Pr [Vcoll1β] ≤ 4q

(
q

3

)
ε2

2n
. (7.20)

Bounding
∑

α∈[6] Pr [Ycollα6] + Pr [Vcollα6]: Let’s consider the event Ycoll16 which

translates to there exist indices i ∈ I1 and j ∈ I6 such that Xi 6= Xj ∧ Yi = Yj . Here as

j ∈ I6, there must exist k, ` ∈ I6 \ {j} such that one of the following happens

Xj = Xk ∧ Uk = U` Uj = Uk ∧ Xk = X` Xj = Xk ∧ Uj = U`

Without loss of generality we assume that the first configuration happens. So to bound

the probability of Ycoll16, we can look at the joint event

∃i ∈ I1, ∃∗j, k, ` ∈ I6, such that Yi = Yj ∧ Xj = Xk ∧ Uk = U`.

In this case the three events Yi = Yj , Xj = Xk, and Uk = U` are independent as Yj , H1,

and H2 are all independent. Thus, we get

Pr [Ycoll16] = Pr [∃i ∈ I1,∃∗j, k, ` ∈ I6, such that Yi = Yj ∧ Xj = Xk ∧ Uk = U`]

=
∑
i∈I1

∑
j<k<`∈I6

Pr [Yi = Yj ] · Pr [Xj = Xk] · Pr [Uk = U`]

≤ q
(
q

3

)
ε2

2n
,

where the last inequality follows from the uniform randomness of Yj and the ε-AXU2

property of H1 and H2. The probabilities of all the remaining events in this group can be

bounded in a similar fashion. We emphasize here that, in case of Ycoll66 and Vcoll66,

it is of note that both i and j cannot lie in the same component due to the sampling

mechanism. In summary, we have

∑
α∈[6]

Pr [Ycollα6] + Pr [Vcollα6] ≤ 12q

(
q

3

)
ε2

2n
. (7.21)
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Bounding
∑

α∈{2,4} Pr [Ycollα4] + Pr [Vcollα4]: In this case we consider the probabil-

ity of event Ycoll24, while the probabilities of all other events can be similarly up-

per bounded. Now Ycoll24 translates to there exist i ∈ I2 and j ∈ I4 such that

Xi 6= Xj ∧Yi = Yj . Since i ∈ I2 and j ∈ I4, there must exist k ∈ I2 \ {i} and ` ∈ I4 \ {j}
such that Xi = Xk ∧ Xj = X`. To bound Ycoll24, we look at the joint event

∃∗i, k ∈ I2, ∃∗j, ` ∈ I4, such that Xk = Xi ∧ Yi = Yj ∧ Xj = X`.

Here, the event Yi = j is independent of Xk = Xi and Xj = X` (Yi and Yj are sampled

independently of H1). So we can apply the alternating events lemma, which gives

Pr [Ycoll24] = Pr [∃∗i, k ∈ I2,∃∗j, ` ∈ I4, such that Xk = Xi ∧ Yi = Yj ∧ Xj = X`]

≤ q2 ε

2n/2
,

where the inequality follows from Lemma 7.3.2, and the fact |I2|, |I4| ≤ q. The proba-

bility of this group is summarized below

∑
α∈{2,4}

Pr [Ycollα4] + Pr [Vcollα4] ≤ 4q2 ε

2n/2
. (7.22)

Bounding
∑

α∈{3,5} Pr [Ycollα5] + Pr [Vcollα5]: This is analogous to the previous case,

and can be bounded as below

∑
α∈{3,5}

Pr [Ycollα5] + Pr [Vcollα5] ≤ 4q2 ε

2n/2
. (7.23)

Bounding
∑

(α,β)∈{(2,5),(3,4),(4,5)} Pr [Ycollαβ] + Pr [Vcollαβ]: We consider the proba-

bility of the event Ycoll25 which translates to there exist i ∈ I2 and j ∈ I5, such that

Xi 6= Xj ∧ Yi = Yj . As i ∈ I2 and j ∈ I5, there must exist k ∈ I2 \ {i} and ` ∈ I5 \ {j},
such that Xi = Xk ∧ Uj = U`. We consider the joint event

∃∗i, k ∈ I2, j, ` ∈ I5, such that Xk = Xi ∧ Yi = Yj ∧ Uj = U`.

Using a similar line of argument as in the case of group 3, we get

Pr [Ycoll25] ≤ q
(
q

3

)
ε2

2n
.

And finally, we have

∑
(α,β)∈{(2,5),(3,4),(4,5)}

Pr [Ycollαβ] + Pr [Vcollαβ] ≤ 6q

(
q

3

)
ε2

2n
. (7.24)
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The result follows by combining Eq. (7.19-7.24), followed by some algebraic simplifica-

tions.

7.5.4 Good Transcript Analysis

From section 7.5.2, we know the types of components present in the transcript graph

corresponding to a good transcript ω are exactly as in Figure 7.5.1. Let

ω = (tq,mq, cq, xq, yq, vq, uq, λq, h1, h2)

be the good transcript at hand. From the bad transcript description of section 7.5.3, we

know that for a good transcript (tq,mq)! (tq, cq), xq! yq, vq! uq, and yq⊕vq = λq.

We add some new parameters with respect to ω to aid our analysis of good transcripts.

For i ∈ [6], let ci(ω) and qi(ω) denote the number of components and number of indices

(corresponding to the edges), respectively of type-i in ω. Note that, q1(ω) = c1(ω),

qi(ω) = 2ci(ω), for i ∈ {2, 3}, and q6(ω) = 3c6(ω). Obviously, for a good transcript

q =
∑6

i=1 qi(ω). Let c(ω) = c2(ω) + c3(ω). For all these parameters, we will drop the ω

parametrization whenever it is understood from the context.

INTERPOLATION PROBABILITY FOR THE REAL ORACLE: In the real oracle, H2←$H2,

Π1 is called exactly q1 + c2 + q3 + c4 + q5 + 2c6 times and Π2 is called exactly q1 + q2 +

c3 + q4 + c5 + 2c6 times. Thus, we have

Pr [Θ1 = ω] =
1

|H|2
· 1

(2n)q1+c2+q3+c4+q5+2c6

· 1

(2n)q1+q2+c3+q4+c5+2c6

. (7.25)

INTERPOLATION PROBABILITY FOR THE IDEAL ORACLE: In the ideal oracle, the sam-

pling is done in parts:

I. Π̃ sampling: Let (t′1, t
′
2, · · · , t′r) denote the tuple of distinct tweaks in tq, and for all

i ∈ [r], let ai = µ(tq, t′i), i.e. r ≤ q and
∑r

i=1 ai = q. Then, we have

Pr
[
Π̃(tq,mq) = cq

]
≤ 1∏r

i=1(2n)ai
.

II. Hash key sampling: The hash keys are sampled uniformly fromH2, whence

Pr [(H1,H2) = (h1, h2)] =
1

|H|2
.

III. Internal variables sampling: The internal variables Yq and Vq are sampled in two

stages.
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(A). type-1, type-2 and type-3 sampling: Recall the sets I1, I2, and I3, from section

7.5.3. Consider the system of equation

L = {Yi ⊕ Vi = λi : i ∈ I}.

Let (λ′1, λ
′
2, · · · , λ′s) denote the tuple of distinct elements in λI , and for all

i ∈ [s], let bi = µ(λI , λ′i). From Figure 7.5.1 we know that L is cycle-free,

non-degenerate and has ξmax ≤ 3. So, we can apply Corollary 7.4.2 to get a

lower bound on the the number of valid solutions, |S(L)| for L. Using the

fact that (YI ,VI)←$S(L), and Corollary 7.4.2, we have

Pr
[
(YI ,VI) = (yI , vI)

]
≤

∏s
i=1(2n)bi

ζ(ω)(2n)q1+c2+q3(2n)q1+q2+c3

,

where

ζ(ω) =

(
1− 780q2c(ω)

22n
− 100q4

23n
− 260q2

22n

)
,

(B). type-4, type-5 and type-6 sampling: For the remaining indices, one value is

sampled uniformly for each of the components, i.e. we have

Pr
[(

Y[q]\I ,V[q]\I
)

=
(
y[q]\I , v[q]\I

)]
=

1

(2n)c4+c5+c6
.

By combining I, II, III, and rearranging the terms, we have

Pr [Θ0 = ω] ≤ 1

|H|2
· 1

ζ(ω)
·

∏s
i=1(2n)bi∏r

i=1(2n)ai(2
n)p1(2n)p2(2n)c4+c5+c6

, (7.26)

where p1 = q1 + c2 + q3, and p2 = q1 + q2 + c3.

7.5.5 Ratio of Interpolation Probabilities

First, we give give two inequality results in Propositions 7.5.7 and 7.5.8, which will be

used to compute the ratio of interpolation probabilities. The proofs of these results are

postponed to the end of this section.

Definition 7.5.6. For r ≥ s, let a = (ai)i∈[r] and b = (bj)j∈[s] be two sequences over

N. We say that a compresses to b, if there exists a partition P of [r] such that P contains

exactly s many cells, say P1, . . . ,Ps, and ∀i ∈ [s], bi =
∑

j∈Pi aj .

Proposition 7.5.7 (Fact 1 in [108]). For r ≥ s, let a = (ai)i∈[r] and b = (bj)j∈[s] be sequences

over N, such that a compresses to b. Then for any n ∈ N, such that 2n ≥
∑r

i=1 ai, we have∏r
i=1(2n)ai ≥

∏s
j=1(2n)bj .
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We remark here that Fact 1 in [108] is a variant of Proposition 7.5.7, which is in fact

false. However, the proof of Lemma 3 in [108] implicitly used Proposition 7.5.7, and

hence stands correct.

Proposition 7.5.8. For r ≥ 2, let c = (ci)i∈[r] and d = (di)i∈[r] be two sequences over N.

Let a1, a2, b1, b2 ∈ N, such that ci ≤ aj , ci + di ≤ aj + bj for all i ∈ [r] and j ∈ [2], and∑r
i=1 di = b1 + b2. Then, for any n ∈ N, such that aj + bj ≤ 2n for j ∈ [2], we have∏r
i=1(2n − ci)di ≥ (2n − a1)b1(2n − a2)b2 .

Proposition 7.5.8 is quite intuitive, in the sense, that the starting value in each of the

falling factorial term on the left is at least as much as the starting values on the right,

and the total number of terms are same on both the sides.

Now, on dividing Eq. (7.25) by Eq. (7.26), and simplifying the expression, we get

Pr [Θ1 = ω]

Pr [Θ0 = ω]

1
≥ ζ(ω) ·

∏r
i=1(2n)ai∏s

i=1(2n)bi(2
n − p1 − c4 − c6)q5+c6(2n − p2 − c5)q4+2c6

2
≥ ζ(ω) ·

∏r
i=1(2n)di

∏r
i=1(2n − di)ai−di∏s

i=1(2n)bi(2
n − p1 − c4 − c6)q5+c6(2n − p2 − c5)q4+2c6

3
≥ ζ(ω) ·

∏r
i=1(2n − di)ai−di

(2n − p1 − c4 − c6)q5+c6(2n − p2 − c5)q4+2c6

}
A

4
≥ ζ(ω). (7.27)

From inequality 1 to 2, we rewrite the numerator such that di = µ(tI , t′i) for i ∈ [r]. At

inequality 2, r ≥ s, as number of distinct internal masking values is at most the number

of distinct tweaks, and t̂I compresses to λ̂I . So using Proposition 7.5.7, we can justify

the transition from 2 to 3. At inequality 3, for i ∈ {2, 3, 4, 5, 6}, ci(ω) > 0 if and only if

r ≥ 2. Also, di ≤ c1 + c2 + c3 ≤ p1 + c4 + c6 and di ≤ p2 + c5 for i ∈ [r]. Similarly,

ai ≤ c1 + c2 + c3 + c4 + c5 + 2c6 ≤ p1 + c4 + q5 + 2c6, and ai ≤ p2 + q4 + c5 + 2c6. Thus,

A satisfies the conditions given in Proposition 7.5.8, and hence A ≥ 1. This justifies the

transition from 2 to 3.

We define εratio : Ω→ [0,∞) by the mapping

εratio(ω) = 1− ζ(ω).

Clearly εratio is non-negative and the ratio of real to ideal interpolation probabilities is

at least 1 − εratio(ω) (using Eq. (7.27)). Let C, C2, and C3 denote the random variables

c(Θ0), c2(Θ0), and c3(Θ0). Thus, we can use Lemma 2.2.1 to get

Advtsprp
CLRW2(q) ≤ 780q2

22n
Ex [C] +

100q4

23n
+

260q2

22n
+ εbad
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≤ 780q4ε

22n
+

100q4

23n
+

260q2

22n
+ εbad, (7.28)

where the second inequality follows from the fact that Ex [C] ≤ q2ε. This is due to the

fact that C = C2 + C3, and for i ∈ {2, 3}, Ex [Ci] ≤ q2ε/2, which itself follows from the

ε-AXU2 property ofH. Theorem 7.5.1 follows from Eq. (7.14), (7.18), and (7.28).

Proof of Proposition 7.5.7: Suppose a compresses to b due to a partition P . Then,

we call P the compressing partition of a and b. For s ≥ 1, let p(s) denote the claimed

statement. We prove the result by induction on s. We first handle the base case, s = 1.

In this case, we have b1 =
∑r

i=1 ai. Thus, ai ≤ b1 for all i ∈ [r]. Now, a term by term

comparison gives
r∏
i=1

(2n)ai ≥ (2n)b1 ,

which shows that the base case p(1) is true. Suppose p(s) is true for all s = n, for some

n > 1. We now show that p(n+ 1) is true.

Let a = (ai)i∈[r] and b = (bj)j∈[s+1] be two sequences over N, such that r ≥ s + 1

and a compresses to b. Suppose P is a compressing partition of a and b. Consider the

sequences a′ = (ai)i∈Ps+1 and b′ = (bs+1). We have |Ps+1| ≥ 1, and bs+1 =
∑

i∈Ps+1
ai,

which means a′ compresses to b′. Further, 2n ≥
∑

i∈Ps+1
ai. Thus, we can apply p(1)

result on a′ and b′ to get ∏
i∈Ps+1

(2n)ai ≥ (2n)bs+1 . (7.29)

For the remaining, let a′′ = (ai)i∈[r]\Ps+1
and b′′ = (bj)j∈[s]. Again, we have r− |Ps+1| ≥

s, and bi =
∑

j∈Pi aj for all i ∈ [s]. Thus, we can apply the induction hypothesis for

p(s) on a′′ and b′′ to get ∏
i∈[r]\Ps+1

(2n)ai ≥
∏
j∈[s]

(2n)bj . (7.30)

The combination of Eq. (7.29) and (7.30) shows that p(s+ 1) is true. The result follows

by induction.

Proof of Proposition 7.5.8: For r ≥ 2, let p(r) denote the claimed statement. We prove

the result by induction on r. For now, assume p(2) to be true, as we handle this case

later. Suppose the proposition statement, denoted p(r), is true for all r ≥ 2. We show

that the statement p(r + 1) is true. Fix some arbitrary n ∈ N.

Let a1, a2, b1, b2, c1, . . . , cr+1, d1, . . . , dr+1 ∈ N, such that ci ≤ ai and ci + di ≤ ai + bj ≤
2n, for all i ∈ [r + 1] and j ∈ [2]. Let i′ be the smallest index in [r + 1], such that

di′ = min{d1, . . . , dr+1} (such an element exist by well ordering principle). Without

loss of generality, we assume that b1 ≥ b2. We compare the terms, (2n − ci′ − j + 1) and

(2n−a1−j+1), for all j ∈ [di′ ]. Since ci′ ≤ a1, we must have (2n−ci′−j+1) ≥ (2n−a1−
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j + 1), for all j ∈ [di′ ]. Now, we must have di′ ≤ b1, otherwise di′ > b1 ≥ b2 which leads

to
∑

i∈[r] di > b1 +b2. Suppose di′ < b1, then using (2n−ci′−j+1)/(2n−a1−j+1) ≥ 1,

we remove all the (2n − ci′ − j + 1), (2n − a1 − j + 1) terms for all j ∈ [di′ ]. This

reduces the claimed statement to p(r), which is true by hypothesis. If di′ = b1, then

we are left with
∏
i∈[r+1]\{i′}(2

n − ci) · · · (2n − ci − di + 1) on the left, where r ≥ 2, and

(2n−a2) · · · (2n−a2− b2 +1) on the right. Using a similar line of argument as above we

can again reduce the claimed statement to p(r), which is true by hypothesis. So p(r+ 1)

is true.

Now the base case p(2) can be handled in a similar manner. In this case we assume

without loss of generality that d1 ≤ d2 and b1 ≥ b2, where d1+d2 = b1+b2. Since c1 ≤ a1,

we must have (2n−c1−j+1) ≥ (2n−a1−j+1), for all j ∈ [d1]. Now, we must have d1 ≤
b1, otherwise d1 > b1 ≥ b2 which leads to d1+d2 > b1+b2. If d1 = b1, then after removing

all the terms corresponding to (c1, d1) and (a1, b1), we have (2n−c2) · · · (2n−c2−d2 +1)

on the left and (2n − a2) · · · (2n − a2 − b2 + 1), where c2 ≤ a2 and c2 + b2 ≤ a2 + b2,

whence (2n−c2) · · · (2n−c2−d2 +1) ≥ (2n−a2) · · · (2n−a2−b2 +1). If d1 < b1, then we

compare terms from (2n− c2) · · · (2n− c2− d2 + 1) with (2n− a1− d1) · · · (2n− a1− b1 +

1)(2n− a2) · · · (2n− a2− b2 + 1). First (2n− c2− d2 + j) ≥ (2n− a2− b2 + j) for j ∈ [b2],

as c2 + d2 ≤ a2 + b2. We remove all these terms to get (2n− c2) · · · (2n− c2− d2 + b2 + 1)

on the left and (2n − a1 − d1) · · · (2n − a1 − b1 + 1) on the right, where the number of

terms d2 − b2 = b1 − d1. Since c2 ≤ a1, (2n − c2 − j + 1) ≥ (2n − a1 − d1 − j + 1) for all

j ∈ [b1 − d1]. This shows that p(2) is true.

7.6 Proof of Mirror Theory for Tweakable Permutations

The induction is defined on the number of components. Apropos to this, we consider

the parameter hi for i ∈ [q1 + c], which denotes the number of solutions for the sub-

system consisting of the first i components of L, denoted L|i. Note that, hi = hi for

i ∈ [q1], and hq = hq1+c. We describe the proof in two steps. First, in section 7.6.1, we

bound the number of solutions for sub-system C1. Given the number of solutions for

C1, we then bound the number of solutions for sub-systems C2 and C3, in section 7.6.2,

which essentially gives a bound for the complete system L.

7.6.1 Bound for Sub-System with ξ = 2

For all i ∈ [q1], denote

Hi =
∏
λ′∈λ̂i

(2n)µ(λi,λ′) · hi,
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and Ji = (2n)2
i . As noted before, we want to bound hi by induction on i, i.e. we want to

evaluate hi+1 from hi. Inspired by Patarin’s mirror theory argument [142, 160], we will

study the relation between Hi and Ji for all i ∈ [q1]. First, we give two supplementary

results in Lemma 7.6.1 and 7.6.3, which will be used later on to prove the main result.

Lemma 7.6.1. For i ∈ [q1],

hi+1 = hi (2n − 2i+ δi+1) +
∑

(j,k)∈M

h′i(j, k, λi+1),

where

M = {(j, k) : j, k ∈ [i], j 6= k, λi+1 6= λj , λi+1 6= λk},

and h′i(j, k, λi+1) denotes the number of solutions of L′|i(j, k, λi+1) := L|i∪{Yj⊕Vk = λi+1},
for some j, k ∈ [i].

Proof. Let Si denote the solution space of L|i, i.e. hi = |Si|. For a fix (yi, vi) ∈ Si, we

want to compute the number of (yi+1, vi+1) pairs such that (yi+1, vi+1) ∈ Si+1. Now,

some pair (x, x ⊕ λi+1) is valid if x 6= yj and x ⊕ λi+1 6= vk, for j, k ∈ [i]. This means

that x /∈ Y ∪ V , where Y = {yj : j ∈ [i]} and V = {vj ⊕ λi+1 : j ∈ [i]}. As all yj values

are pairwise distinct and vj values are pairwise distinct, we must have |Y| = |V| = i.

Thus, we have

hi+1 =
∑

(yi,vi)∈Si

(2n − |Y ∪ V|)

=
∑

(yi,vi)∈Si

(2n − |Y| − |V|+ |Y ∩ V|)

= hi · (2n − 2i) +
∑

(yi,vi)∈Si

|Y ∩ V|

1
= hi · (2n − 2i) +

∑
(yi,vi)∈Si

∑
j,k∈[i]

φ(j, k)

2
= hi · (2n − 2i) +

∑
j,k∈[i]

h′i(j, k, λi+1)

3
= hi · (2n − 2i) + hi · δi+1 +

∑
(j,k)∈M

h′i(j, k, λi+1)

= hi · (2n − 2i+ δi+1) +
∑

(j,k)∈M

h′i(j, k, λi+1), (7.31)

where φ(j, k) is the indicator variable that takes the value of 1 when yj⊕vk = λi+1, and

0 otherwise. The equality from 1 to 2 follows from the definition of h′i(j, k, λi+1), and

the equality from 2 to 3 follows from the fact that exactly δi+1 many (j, k) pairs exist

such that k = j, λi+1 = λj , and yj ⊕ vj = λi+1. For these the number of solutions is
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exactly the same as hi (since Yj ⊕Vk = λi+1 is already in L|i). The remaining valid (j, k)

pairs, must have λj , λk 6= λi+1, else they contradict L. The set of these remaining (j, k)

pairs is the setM.

The following corollary of Lemma 7.6.1 will be quite useful. The proof is immediate

from the proof of Lemma 7.6.1.

Corollary 7.6.2. For i ≥ 1, (2n − 2i)hi ≤ hi+1 ≤ (2n − i)hi.

Lemma 7.6.3. For all (j, k) ∈M, and for all β ∈ {0, 1}n,

h′i(j, k, β) ≥ hi
2n − i+ 1

·
(

1− 2(i− 2)

2n − 2(i− 2)

)
.

Proof. We are interested in h′i(j, k, β), which is the number of solutions of L′|i(j, k, β),

j, k ∈M. The sub-system containing j and k equations is of the form

Yj ⊕ Vj = λj , Yj ⊕ Vk = β, Yk ⊕ Vk = λk,

where once we fix Yj = yj , all other unknowns are completely determined by linearity.

Thus, h′i(j, k, β) is at most hi−1, where hi−1 is the number of solutions of L|i−1, the sys-

tem obtained by removing the equations Yj ⊕Vk = β and Yk⊕Vk = λk from L′|i(j, k, β).

Now a solution among the hi−1 solutions of Li−1 is not valid to be counted in h′i(j, k, β),

if there exists ` ∈ [i] \ {k}, such that yj ⊕ v` = β or yj ⊕ v` = β ⊕ λk ⊕ λ`. The first

case leads to Vk = V`, and the second case leads to Yk = Y`, where k 6= ` is obvious.

Therefore, the two cases correspond to the terms h′i−1(j, `, β) and h′i−1(j, `, β⊕ λk ⊕ λ`),

whence we have

h′i(j, k, β) ≥ hi−1 −
∑

`∈[i]\{j,k}

h′i−1(j, `, β)−
∑

`∈[i]\{j,k}

h′i−1(j, `, β ⊕ λk ⊕ λ`)

Using similar line of argument as above we bound h′i−1(j, `, β) ≤ hi−2 and h′i−1(j, `, β⊕
λk ⊕ λ`) ≤ hi−2, where the two hi−2 terms correspond to the number of solutions of

L′|i−2(j, `, β) and L′|i−2(j, `, β ⊕ λk ⊕ λ`). Finally, we have

h′i(j, k, β) ≥ hi−1 −
∑

`∈[i]\{j,k}

hi−2 −
∑

`∈[i]\{j,k}

hi−2

1
≥ hi−1 − 2(i− 2)hi−2

2
≥ hi−1

(
1− 2(i− 2)

2n − 2(i− 2)

)
3
≥ hi

2n − i+ 1

(
1− 2(i− 2)

2n − 2(i− 2)

)
,
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where 1-3 follows from Corollary 7.6.2. Note that, we switch from hi−2 to hi−1 by rein-

troducing the equation Y` ⊕ V` = λ`, and from hi−1 to hi by reintroducing the equation

Yk ⊕ Vk = λk. The readers may use Figure 7.6.1 to get a pictorial view of the switchings

between different systems of equations.
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...
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...
Yi

Vi

λ1

λj

λk

λi

β
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Y1

V1

...

...

...
Yj

Vj

...

...

...

...

...

...

...
Yi

Vi

λ1

λj

λi

L′|i−1(j, `, β)

Y1
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...
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Yj

Vj
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Y`

V`

...
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...
Yi
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λ1

λj

λi

λ`

β

L′|i−1(j, `, β
′)

Y1

V1
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...

...
Yj

Vj
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...

...
Y`

V`

...
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λ1

λj

λi

λ`

β′

L|i−2

Y1

V1

...

...

...
Yj

Vj

...

...

...

...

...

...
Yi

Vi

λ1

λj

λi

L|i−1

Y1

V1

...

...

...
Yj

Vj

...

...

...

...
Y`

V`

...
Yi

Vi

λ1
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λi

λ`

L|i

Y1

V1

...

...

...
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...
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...
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Figure 7.6.1: The switchings used in the proof of Lemma 7.6.3. From left to right:
L′|i(j, k, β) is the system L|i ∪ {Yj ⊕ Vk = β}; L|i−1 is obtained by removing the equa-
tions involving Vk from L′|i(j, k, β); L′|i−1(j, `, β) is the system L|i−1 ∪ {Yj ⊕ V` = β};
L′|i−1(j, `, β′) is the system L|i−1 ∪ {Yj ⊕ V` = β′}, where β′ = β ⊕ λk ⊕ λ`; L|i−2 is
obtained by removing the equations involving V` from L′|i−1(j, `, β) or L′|i−1(j, `, β′);.
Note that, there should have been two L|i−2 switchings, one each for L′|i−1(j, `, β) and
L′|i−1(j, `, β′). We have drawn just once for economical reasons. Similar clarification

applies to switchings from L|i−2 to L|i−1, and from L|i−1 to L|i.

Remark 7.6.4. In [160, Theorem 11] a result similar to Lemma 7.6.3 has been proved for

random function scenario. While the proof of that theorem is correct, there is a nota-

tional issue which is worth pointing out. The h′ notation is used in an unparameterized

fashion, with an explicit hint in [160, Theorem 8] that this is done for simplification. But

this simplification leads to a rather peculiar technical issue in [160, Theorem 11], where

both lower and upper bounds are required on h′ values, requiring different switchings.

Without the parametrization it is difficult to understand (and verify) the switchings.

Remark 7.6.5. The proof of Lemma 7.6.3 should also give an idea of the proof complexity.

Since we only want ε = O(q4/23n), we needed a somewhat crude estimate of h′ values.
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In actual mirror theory as we move towards ε = O(q/2n), we have to make a good

estimate of h′ values, which does not seem to be easy.

Now, we state the main result of this section.

Lemma 7.6.6. For q1 < 2n−2, we have

Hq1

Jq1
≥
(

1− 4q2
1

22n
− 36q4

1

23n

)
.

Proof. We prove by induction on i ∈ [q1], the number of components. First, H1 = 22n =

J1. So the statement is true for i = 1. By definition, the ratio Hi+1

Hi
= (2n − δi+1) · hi+1

hi
,

and Ji+1 = (2n − i)2Ji. So we have

Hi+1

Ji+1
=

(2n − δi+1)hi+1

hi

(2n − i)2

Hi

Ji
. (7.32)

From Lemma 7.6.1 and 7.6.3, we have

hi+1 ≥ hi

(
(2n − 2i+ δi+1) +

|M|
2n − i+ 1

(
1− 2(i− 2)

2n − 2(i− 2)

))
. (7.33)

Recall thatM = {(j, k) : j, k ∈ [i], j 6= k, λj , λk 6= λi+1}. As there are δi+1 many i′ ∈ [i]

such that λi+1 = λi′ , we must have |M| ≥ (i− δi+1)(i− δi+1 − 1). On substituting this

value for |M| in Eq. (7.33), and using the resulting lower bound for hi+1 in Eq. (7.32),

we get

Hi+1

Ji+1

1
≥

(2n − δi+1)
(

(2n − 2i+ δi+1) + (i−δi+1)(i−δi+1−1)
2n−i+1

(
1− 2(i−2)

2n−2(i−2)

))
(2n − i)2

Hi

Ji

2
≥

(2n − i)2 − i− δi+1(i−δi+1)(i−δi+1−1)
2n − 2(i−2)(i−δi+1)(i−δi+1−1)

2n−2(i−2)

(2n − i)2

Hi

Ji
3
≥
(

1− 4i

22n
− 36i3

23n

)
Hi

Ji

4
≥
(

1− 4i

22n
− 36i3

23n

)i
H1

J1

5
≥
(

1− 4i2

22n
− 36i4

23n

)
. (7.34)

Here 1 to 2 is just a simplification of the expression; from 2 to 3 we use δi+1 ≤ i, and

i ≤ 2n−2; and from 3 to 4 we recursively apply the induction hypothesis. The result

follows by induction.
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7.6.2 Bound for Sub-System with ξ = 3

At this point, we have the bound for the sub-system consisting the first q1 many com-

ponents, and we want to extend it to get the bound on hq1+c. We first extend to get

hq1+c2 , and then further extend to get hq1+c. Before moving forward, we add some

more notations. For i ∈ [c2], let i− = q1 + 2i− 1, i+ = i− + 1, i′ = q1 + i. Now we give a

natural modification in the definition of Hi′ and Ji′ to accommodate for two equations

per component. For all i ∈ [c2], denote

Hi′ =
∏

λ′∈λ̂i+

(2n)µ(λi+ ,λ′) · hi′ ,

and Ji′ = (2n)q1+i(2
n)q1+2i. Then, we have the following relations for i ∈ {0, . . . , c2}:

Hq1+i+1 = (2n − δ(i+1)−)(2n − δ(i+1)+)
hq1+i+1

hq1+i
Hq1+i (7.35)

Jq1+i+1 = (2n − q1 − i)(2n − q1 − 2i)(2n − q1 − 2i− 1)Jq1+i. (7.36)

Our approach will be similar to the previous case, and we will first establish a lower

bound on hi′+1 in terms of hi′ in Lemma 7.6.7.

Lemma 7.6.7. For i ≥ 0,

hi′+1 ≥ (2n − 3q1 − 5i+ δ(i+1)− + δ(i+1)+)hi′ ,

with the convention that h0′ = hq1 .

Proof. Let Si′ denote the solution space of L|i′ , i.e. hi′ = |Si′ |. For a fix (yi+ , vi+) ∈ Si′ ,
we want to compute the number of (y(i+1)− , v(i+1)−) and (y(i+1)+ , v(i+1)+) pairs such

that (y(i+1)+ , v(i+1)+) ∈ Si′+1. Clearly the two tuples should be of the form (x, x ⊕ λ−)

and (x, x ⊕ λ+) for some x ∈ B. Now, some x is valid if x 6= yj and x ⊕ λi+1 6= vk,

for j, k ∈ [i+]. This means that x /∈ Y ∪ V , where Y = {yj : j ∈ [i+]} and V =

{vj⊕λ(i+1)− , vj⊕λ(i+1)+ : j ∈ [i+]}. Now |Y| = q1 +i, since exactly q1 components from

sub-system C1, and imany components from sub-system C2 have been evaluated so far,

each contributing 1 y value in Y . And, |V| ≤ 2q1 + 4i, since each component in C1 and

C2 contributes at most 2 and 4 v values, respectively. Further, exactly δ(i+1)− + δ(i+1)+

many equations share λ value with one of λ(i+1)− , or λ(i+1)+ , whence |Y∩V| ≥ δ(i+1)−+

δ(i+1)+ . Thus, we have

hi′+1 =
∑

(yi+ ,vi+ )∈Si′

(2n − |Y ∪ V|)
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=
∑

(yi+ ,vi+ )∈Si′

(2n − |Y| − |V|+ |Y ∩ V|)

≥
∑

(yi+ ,vi+ )∈Si′

(2n − 3q1 − 5i+ δ(i+1)− + δ(i+1)+)

= (2n − 3q1 − 5i+ δ(i+1)− + δ(i+1)+) · hi′ .

Now, we state the lemma that bounds the number of solutions of C1 ∪ C2 given the

bound for C1.

Lemma 7.6.8. For q′ = q1 + q2 ≤ 2n−2, we have

Hc′2

Jc′2
≥

(
1− 196q′2c2

22n
− 40q′c2

22n
− 24q′3c2

23n
− 48q′2

22n
− 16q′

22n
− 8q′3

23n

)
Hq1

Jq1
.

Proof. We use induction on i ∈ [c2]. In the base case for i = 1, it can be easily verified

that we have

H1′

J1′
≥

(2n − δ1−)(2n − δ+)(2n − 3q1 + δ1− + δ1+)

(2n − q1)(2n − q1)(2n − q1 − 1)

Hq1

Jq1

≥
(

1− 48q2
1

22n
− 16q1

22n
− 8q3

1

23n

)
Hq1

Jq1
, (7.37)

where we have used the fact that δ1− , δ1+ ≤ q1, and q1 ≤ 2n−1. Note that, when q1 = 0,

H ′1 = 23n > 22n(2n − 1) = J1′ , by definition. For i > 1, on dividing Eq. (7.35) by Eq.

(7.36), we have

Hi′+1

Ji′+1
=

(2n − δ(i+1)−)(2n − δ(i+1)+)
hi′+1

hi′

(2n − q1 − i)(2n − q1 − 2i)(2n − q1 − 2i− 1)

Hi′

Ji′
. (7.38)

On substituting the lower bound on hi′+1 from Lemma 7.6.7 in Eq. (7.38), we get

Hi′+1

Ji′+1

1
≥

(2n − δ(i+1)−)(2n − δ(i+1)+)(2n − 3q1 − 5i+ δ(i+1)− + δ(i+1)+)

(2n − q1 − i)(2n − q1 − 2i)(2n − q1 − 2i− 1)

Hi′

Ji′

2
≥

(
1− (24q′2 + 5q′)2n + 8q′3

(2n − q1 − i)(2n − q1 − 2i)(2n − q1 − 2i− 1)

)
Hi′

Ji′

3
≥

(
1− 196q′2

22n
− 40q′

22n
− 24q′3

23n

)
Hi′

Ji′

4
≥

(
1− 196q′2

22n
− 40q′

22n
− 24q′3

23n

)i
H1′

J1′

5
≥

(
1− 196q′2i

22n
− 40q′i

22n
− 24q′3i

23n
− 48q′2

22n
− 16q′

22n
− 8q′3

23n

)
Hq1

Jq1
, (7.39)
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where, q′ = q1 + q2, 1-2 follows from δ(i+1)− , δ(i+1)+ , i, q1 ≤ q; 2-3 follows from q1 + 2i <

2n−1; 3-4 follows from recursive application of induction hypothesis; 4-5 follows from

Eq. (7.37) and q1 ≤ q.

At this point, we have hq1+c2 , and we want to extend it to hq1+c. The extension follows

from exactly the same line of argument as above. We skip the formal analysis and just

provide the final result in Lemma 7.6.9. For the sake of verification we provide some

modified definitions. For i ∈ [c3], let i− = q1 + q2 + 2i− 1, i+ = i− + 1, i′ = q1 + c1 + i.

For all i ∈ [c3], denote

Hi′ =
∏

λ′∈λ̂i+

(2n)µ(λi+ ,λ′) · hi′ ,

and Ji′ = (2n)q1+2c2+i(2
n)q1+c2+2i.

Lemma 7.6.9. For q = q1 + q2 + q3 < 2n−2, and c = c2 + c3, we have

Hq1+c

Jq1+c
≥
(

1− 604q2c

22n
− 128qc

22n
− 192q3c

23n
− 200q2

22n
− 56q

22n
− 64q3

23n

)
Hq1

Jq1
.

Theorem 7.4.1 follows from the definitions of Hq1+c and Jq1+c, and Lemmata 7.6.6 and

7.6.9.
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Chapter 8

Random Read Access in OCB

Now that we have studied the security of various message authentication and encryp-

tion schemes, we shift our focus to authenticated encryption schemes. In this chapter,

we study one of the most popular AE family, called Offset Codebook or OCB. The first

version of OCB, called OCB1, was proposed by Rogaway et al. [174] in 2001. Later,

Rogaway [171] proposed a second version of OCB, called OCB2. The latest version of

OCB, called OCB3, was proposed by Krovetz and Rogaway [119]. OCB3 is one of the

winners in the “high performance applications” category of the recently concluded [42]

competition. OCB achieves both authentication and encryption with minimal perfor-

mance overhead compared to classical single-pass encryption only modes such as CTR

mode [153]. In fact OCB3 [119] has, to a larger extent, already achieved the theoretical

bounds for efficiency in software implementation.

Recall the random read access and out-of-sequence decryption properties (see section

1.3.3 of chapter 1). The efficiency of OCB family in random read access depends on the

efficiency of the underlying mask generating function or MGF in direct computation.

OCB masks the input and output of each block cipher call with the output of an MGF.

So, if the MGF is efficient in direct computation1 then OCB can achieve random read

access almost as efficiently as CTR [153] based designs, most notably CCM [154] and

GCM [130]. Next, we revisit some popular choices of MGFs.

8.1 Revisiting Small-Domain AXU Hash Functions

SOME MORE NOTATIONS: For m ∈ N, Im denotes the identity matrix of size m. We

use ⊕ and � to denote the field addition (XOR) and field multiplication, respectively,

1Computation over arbitrary inputs without following any particular order.
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over the finite field F2n = B. We use α to denote a primitive element of F2n , and for any

x ∈ F2n , the operation x � α will be referred to as the α-multiplication operation on x.

For some m ∈ N, for x ∈ {0, 1}m, b ∈ [m], x� b denotes x shifted b bits to the right, i.e.,

0b‖x[m−b], while x � b denotes x shifted b bits to the left. For a binary string x, ntz(x)

denotes the number of trailing zero bits in x.

8.1.1 Examples of Small-Domain AXU Hash Function

Symmetric-key cryptographic literature is rich in AXU hash function candidates. In this

work we concentrate only on small-domain hash functions that can be used to generate

masks in OCB. Further, the range of these hash functions is B. In what follows, we

discuss some examples of AXU hash functions, with a summary given in Table 8.1.1.

Table 8.1.1: Feature summary of some small-domain AXU hash function candidates,
where ⊕, �, �, ‖, ⊕? denote addition, multiplication, shifts, concatenation and con-
ditional addition over appropriate fields; AESRD denotes AES round function, wt and

ntz denote the hamming weight and trailing zeros function.

Hash Family Sequential Direct Key Size Domain Size AXU Bound(operations) (operations) in log2

xtimes [174] 1�, 1 ⊕? O(log2 i) � 128 128 2−128

gray [35, 119] 1 ntz(i), 1 ⊕ 1 ⊕, 1 �, 1 � 128 128 2−128

mtrx [45, 81] 2 �, 1 ⊕# O(log2 i) � 128 128 2−128

mlin wt(i) ⊕ wt(i) ⊕ 128r r 2−128

clh [137] wt(i)�, wt(i)⊕ wt(i)�, wt(i)⊕ 128 127 2−128

sts [119] 1 ‖, 1 ⊕, 3� 1 ‖, 1 ⊕, 3� 128 6 2−128

lcube 1 ⊕, 2 � 1 ⊕, 2 � 128 128 2−128

linv [174] 1 ⊕, 1 � 1 ⊕, 1 � 128 128 2−128

aes4 [135, 141] 4 AESRD 4 AESRD 512 128 2−113

aes2 (Section 8.2) 2 AESRD 2 AESRD 256 32 2−113

aes1 (Section 8.2) 1 AESRD 1 AESRD 128 8 2−96

# Note that, [81] defines many three-operation maskings for 128 bit binary field.

Example 8.1 (α-multiplication based hash [174]). For some reasonably large ` ∈ [2n − 1],

let X = [`] and K = B. The hash function xtimes, defined as ∀L ∈ B, i ∈ [`],

xtimesL(i) = xtimes(L, i) := αi � L, (8.1)

is a 2−n-AXU hash. xtimes has been used to generate position dependent input masks in many

symmetric-key designs including the OCB family [119, 171, 174], OTR [138], PMAC [35],

PMAC+[190], EME [88], COPA [3] and ElMD [40]. The popularity of xtimes is mainly due

to its efficiency in sequential computation, as we have

∀i ≥ 1, L ∈ B, xtimesL(i+ 1) = α� xtimesL(i),

and α-multiplication is efficient (one shift and one conditional bit-wise XOR operation). While

the sequential computation of xtimesL(i) is very efficient, the same is not reflected in direct
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computation of xtimesL(i) when i is a large integer. In general it may require O(log2 i) many

field multiplications. Even when the αi values are precomputed, we need one field multiplication

which is not as efficient as one α-multiplication. Indeed we can even avoid the precomputation

and simply use i� L as the hash definition.

Example 8.2 (Gray-code based hash [35, 119]). For reasonably large ` ∈ [2n−1], letX = [`]

and K = B. The hash function gray is defined as,

∀L ∈ B, i ∈ [`], grayL(i) = gray(L, i) := γ(i)� L (8.2)

where γ(i) := i⊕ (i� 1) is the gray code value for i. The Gray code sequence has a very nice

feature that for i ≥ 1, the i-th gray code can be written in terms of the (i− 1)-th gray code, i.e

γ(i) = γ(i− 1)⊕ 2ntz(i),

When we substitute this in (8.2) we get an alternate definition ∀L ∈ B, i ∈ [`],

grayL(i) = gray(L, i) := ⊕ij=1Lntz(j). (8.3)

where Lj = αj � L for all j < n. In [119] and RFC7253 [120], gray has been shown to be a

2−n AXU hash function. Note that, we have

∀i ≥ 1, L ∈ B,grayL(i+ 1) = grayL(i)⊕ Lntz(i+1).

So if theLj values are precomputed, then in sequential computation gray hash only requires, ntz

computation along with a single n-bit XOR operation. Hence it is very efficient in sequential

computations. This hash function is applied in OCB3 [119] (RFC7253 [120]) and PMAC [35].

Example 8.3 (Matrix-powered hash [45, 81]). Let n = wn′ for some positive integer w,

called word size, whose values are generally software friendly such as 8, 16, 32, 64 etc. Let

W = {0, 1}w and K = Wn′ and X = [`] for some reasonably large ` ∈ [2n − 1]. Let M be

an invertible n′ × n′ matrix whose entries are from the field2 W such that for all i ∈ [2n − 1],

In′ +M i is invertible. Then the hash function mtrx (called matrix-powered hash), defined as

∀L ∈ Wn′ , i ∈ [`], mtrxL(i) = mtrx(L, i) := M i · L, (8.4)

is a 2−n-AXU. Note here that L is viewed as a vector over W . Various matrix-powered hash

candidates are given in [81] and [45]. But, similar to xtimes hash, all those hash functions are

efficient in sequential computation and inefficient in direct computation.

2{0, 1}m can be viewed as the binary field by fixing a degm primitive polynomial.
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The matrix-powered hash function is a very general candidate. For example, xtimes

and gray hash functions can be viewed as instances of matrix-powered hash for appro-

priate choices of the matrix M . The readers are directed to [81] and [45] for a detailed

exposition on matrix-powered hash functions. A table of various word-oriented matri-

ces has been listed in [81].

Example 8.4. Some other finite field based constructions, with K = X = B, are the following:

∀L ∈ B, x ∈ B

• lcubeL(x) = (L⊕ x)3;

• linvL(x) = (L⊕ x)−1 (if x 6= L), 0 otherwise.

It is easy to verify that lcube is 21−n-AXU and linv is 22−n-AXU hash function.

Example 8.5 (Multi-linear hash). For ` ∈ [2n − 1], let X = (`] and K = Blog2 `. The hash

function mlin (called multi-linear hash), is defined as

∀L ∈ K, b ∈ X , mlinL(b) = mlin(L, b) := ⊕ri=1biLi, (8.5)

is a 2−n-AXU hash function, where L1, . . . , Lr ∈ B and b1, . . . , br ∈ {0, 1}. In Grain-128a

[2], the tag is computed using mlin, where the keys are derived using Toeplitz matrix.

Example 8.6 (Circulant hash [137]). In [137] Minematsu presented a small-domain hash

function based on data-dependent rotations. For ` ∈ [2n−1 − 1], let X = (`] and K = B. The

hash function clh (called circulant hash) is defined as ∀K ∈ K, x ∈ X ,

clhL(x) = clh(L, x) :=
⊕

i∈[log2 `]: xi=1

(L� (i− 1)). (8.6)

For direct computation, the hash function might require n − 1 rotations and n − 2 XORs in

the worst case; for sequential computation some optimization is possible for the i-th input given

the (i − 1)-th output. In [137], clh is shown to be both 2−128-AXU and 2−128-uniform hash

function.

Example 8.7 (Stretch-then-shift hash [119]). In [119] Krovetz and Rogaway presented a

highly efficient AXU hash function over a small domain X = [64]. It follows the general data-

dependent rotation technique by Minematsu [137]. Fix c ∈ N. For X = (ψ(c)− 1] and K = B,

where ψ(c) is a positive integer denoting the maximum domain size for a fixed c. The hash

function sts (called stretch-then-shift hash) is defined as ∀L ∈ B, i ∈ [0..ψ(c)− 1],

stsL(i) = sts(L, i) := msbn(stretchc(L)� i), (8.7)
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where ∀L ∈ B, stretchc(L) := L‖(L ⊕ (L � c)). The hash function first stretches the

key based on a parameter c, and then makes data-dependent shift before outputting the most

significant n bits; hence the name. For n = 128, c = 8 and ψ(c) = 64, Krovetz and Rogaway

showed that sts achieves 2−128-AXU and 2−128-uniform bound [119].

Table 8.1.1 clearly shows that most of the above given small-domain hash functions are

indeed quite efficient when computed sequentially over the indices; but all of them are

inefficient for direct computation at any arbitrary index. A possible way out is to use

iterations of some cryptographic round function with good differential probability. In

the next section we take this approach.

8.2 AES-based Small-Domain AXU Hash Functions

In the previous section we listed some hash functions based on finite field operations

and data dependent rotations. Now we will propose some hash functions based on

the differential properties of the AES rounds. Before moving forward, we give the

standard and well-known [141, 157] definition for differential probability of a (keyed)

permutation.

Definition 8.2.1. Let π be a permutation over F2n and ΠK be a keyed permutation over

F2n with key K←$K. For any given non-zero a, b ∈ F2n the differential probability of

π, is defined as

dpπ(a, b) := Pr
X

[π(X)⊕ π(X⊕ a) = b].

The maximum differential probability (MDP) of π is defined as

MDP(π) := max
a6=0,b

dpπ(a, b).

Similarly, the expected differential probability (EDP) of ΠK, is defined as

EDPΠK
(a, b) := Pr

K,X
[ΠK(X)⊕ΠK(X⊕ a) = b]

=
∑
k∈K

Pr
X

[Πk(X)⊕Πk(X⊕ a) = b | K = k]× Pr [K = k]

=
∑
K∈K

dpΠk
(a, b)× Pr [K = k] = ExK

[
dpΠK

(a, b)
]
,

The maximum expected differential probability (MEDP) of ΠK is defined as

MEDP(ΠK) := max
a6=0,b

EDPΠK
(a, b).
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We have also used the term differential probability in the context of AXU hash func-

tions in Definition 2.3.1. Now that we have formally defined the differential probability

of a (keyed) permutation, it is imperative that we discuss the similarity and differences

between the two probabilities. The major difference is the source of randomness. In the

AXU view of differential probability, the randomness is due to the hash key, whereas

here one of the input is chosen randomly. Even though this seems to be a major dif-

ference, but for certain class of functions the two views have a very nice relationship.

Suppose π is a (possibly keyed) permutation over F2n with keyspaceK (empty set when

π is keyless). We define a function π′ : F2n×K×F2n → F2n as a keyed family of function

indexed by K,K ′ ∈ F2n ×K, such that

∀K,K ′, x ∈ F2n ×K × F2n , π
′
K,K′(x) := πK′(K ⊕ x).

We will drop K ′ from the subscript, whenever π is unkeyed. Lemma 8.2.2 is a well-

known result that we prove here just for the sake of completeness.

Lemma 8.2.2. For some ε ≥ 0,

1. If π is unkeyed and MDP(π) = ε then π′ is an ε-AXU hash for K←$F2n .

2. If π is keyed and MEDP(π) = ε then π′ is an ε-AXU hash for (K,K′)←$F2n ×K.

Proof. We prove the unkeyed version of the lemma. The keyed version can be proved

in similar fashion. Let x, x′ ∈ F2n such that x 6= x′ and δ ∈ F2n . If δ = 0 then the result

is vacuously true as π′ is a permutation. Suppose δ 6= 0. Then, we have

Pr
K

[
π′K(x)⊕ π′K(x) = δ

]
= Pr

K

[
π(K⊕ x)⊕ π(K⊕ x′) = δ

]
= Pr

X
[π(X)⊕ π(X⊕ x′ ⊕ x) = δ]

≤ dp(π) = ε.

8.2.1 Revisiting MEDP bounds for the AES

AES is a Substitution Permutation Network (SPN) with block size n = 128, internal

s-box input size b = 8, where all s-boxes are identical, denoted by S. The permutation

layer, denoted by φ, consists of a bytewise permutation followed by four identical 32-

bit linear transformations applied in parallel. One round of AES, denoted by 1-AESRD

(without the subkey mixing) is nothing but φ◦S. Using the 1-AESRD round function, we
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can define the keyed function i-AESRD for all integers i > 1 as follows: ∀x ∈ F2128 ,K ∈
Fi−1

2128
,

For i = 2:

2-AESRDK(x) = 1-AESRD(K1 ⊕ 1-AESRD(x))

For i > 2:

i-AESRDK(x) = 1-AESRD(Ki−1 ⊕ (i− 1)-AESRDK[i−2]
(x))

The differential properties of AES is a well-studied [52, 53, 114, 115, 157] topic in

symmetric-key cryptography. In fact, one of the design criteria for AES [52, 152] was

protection against linear [127] and differential cryptanalysis [32].

In [53], Daemen and Rijmen first observed that due to the specific nature of the AES

permutation layer φ, the differential probabilities over 2 AES rounds are equivalent to

those over a reduced SPN structure, which they called a super box. Basically the two

rounds of AES over 128-bit input can be viewed as four parallel invocations of the

super box with independent keys (disjoint substrings of a uniform string are indepen-

dent) each working with distinct 32 bits of the input. We denote an AES super box

instantiated with a subkey K by aesSBK .

Keliher and Sui [114, 115] later used this idea to derive a tight MEDP bound for 2-

AESRD. Specifically, in [114, Theorem 1, Theorem 2] and [115, section 4.1] they proved

that the MEDP for AES super box is 1.656 × 2−29, which is equivalent to the MEDP

for 2-AESRD. We refer the readers to [53, 115] for further exposition on AES super box

and its relation with 2-AESRD. Using the fact that the upper bound on the MEDP for

4 or more rounds of AES is equal to the 4-th power of the upper bound on the MEDP

for 2-AESRD, Keliher and Sui [115] further showed that MEDP for t-AESRD for t ≥ 4 is

upper bounded by 1.881× 2−114. We summarize these results in Proposition 8.2.3.

Proposition 8.2.3. [115, section 4.1] Let X3←$ (F2128)3 and Y←$F232 . Then,

1. MEDP(aesSBY) ≈ 1.656× 2−29.

2. MEDP(2-AESRDX1) ≈ 1.656× 2−29.

3. MEDP(4-AESRDX3) ≤ 1.881× 2−114.

8.2.2 Our AES-based proposals

In the following discussion we fix n = 128, i.e. B = {0, 1}128. Before presenting our

proposals we start with a simple 4-AESRD based hash function in the following exam-

ple.
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Example 8.8. Let X = B and K = (B)4. For L4 ∈ (B)4 and x ∈ B, the 4-AESRD based hash

function aes4 is defined as

aes4L4(x) = aes4(L4, x) := 4-AESRDL[2...4](L1 ⊕ x).

From Lemma 8.2.2 and Proposition 8.2.3, it is straightforward to see that aes4 is a 1.88×2−114-

AXU hash function. Minematsu used such a hash function in [135]. In [141] Minematsu and

Tsunoo used a variant of aes4 to construct a universal hash function and subsequently extended

it to construct a MAC. Jakimoski and Subbalakshmi [100] further built upon their work to get

more efficient hash functions and MAC. Bellare et al. [20] proposed a cryptographic hash based

on 4-AESRD.

8.2.2.1 1-Round AES based Hash Function

The MDP for AES s-box S is known to be 2−6 [157]. We define a keyed function S′ :

F28 × F28 → F28 as

∀K,x ∈ F2
28 , S

′
K(x) := S(K ⊕ x).

Clearly S and S′ satisfy the conditions in Lemma 8.2.2, hence S′ is 2−6-AXU hash func-

tion. Now, let X = {0, 1}8 (sometimes viewed as [256]) and K = B (viewed as X 16).

Given a key L, and an input i ∈ X , we define the one round AES hash, aes1 as

aes1L(i) = aes1(L, i) := 1-AESRD(L⊕ i16)

= φ(S′L1
(i)‖ · · · ‖S′L16

(i)), (8.8)

where i16 denotes i duplicated 16 times. Recall that φ is the linear transformation or

permutation layer used in AES. It is well-known that the AXU property is preserved

under linear composition over an AXU has function. Thus φ being a linear transforma-

tion does not affect the AXU bound for aes1 and can be ignored. When L is uniformly

drawn from K and viewed as an element of X 16 (i.e. as a 16-tuple with elements from

X ), then Li’s are mutually independent. So by repeatedly using Proposition 2.3.5 and

Lemma 8.2.2, we get the AXU bound for aes1 in Lemma 8.2.4.

Lemma 8.2.4. aes1 as defined above is 2−96-AXU hash function.
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8.2.2.2 2-Round AES based Hash Function

From Proposition 8.2.3 we already now that the MDP for aesSB is upper bounded by

1.656× 2−29. Again we define a keyed function aesSB′ : F232 × F232 × F232 → F232 as

∀K2, x ∈ (F232)3, aesSB′K2(x) := aesSBK2(K1 ⊕ x).

Clearly aesSB′ is 1.656 × 2−29-AXU hash function (using Lemma 8.2.2). Now let X =

{0, 1}32 (viewed as [232]) andK = B×B (viewed as X 4×X 4). Given a key L = (L,L′) ∈
X 4 ×X 4, and an input i ∈ X , we define the two round AES hash, aes2 as

aes2L,L′(i) = aes2(L,L′, i) := 2-AESRDL′(L⊕ i4))

= φ(aesSB′L′1
(L1 ⊕ i)‖ · · · ‖aesSB′L′4(L4 ⊕ i)),

where i4 denotes i duplicated 4 times and each Li/L′i is a 32-bit strings. Using a similar

line of argument as used in case of aes1 we get the AXU bound for aes2 in Lemma

8.2.5.

Lemma 8.2.5. aes2 as defined above is 1.881× 2−114-AXU hash function.

So we see that aes1 and aes2 are sub-optimum, but decent AXU hashes given the

domains they are applied upon. In addition, they would allow efficient random read

access. In fact it is quite surprising that this fact was not discovered yet. However,

going by the existing security proofs, the straightforward application of these hash

functions in OCB is not advisable as they give sub-optimum security bounds. This is

due to AXU assumption on the underlying MGF.

8.3 Generic view of OCB

In previous two sections we have seen various examples of AXU hashes over small

domain [`], where ` is typically a large positive integer in [2n]. These hash functions

are useful when the goal is to embed position-based dependency (called masks) to the

input blocks of the underlying primitive, typically a block cipher. This type of embed-

ding is used in many encryption, MAC and AE algorithms. Some prominent schemes

among these belong to the OCB like design paradigms. We call the embedding function

— mask-generating function (MGF).

MASK GENERATING FUNCTION: Typically, an MGF, λ : L × N × N → B is a (L,N ×
N)-hash function family indexed by the key space L. Here N is typically called the
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nonce space. For notational simplicity we will sometime write λ(i) = λL(N, i), i.e

N ∈ N and L ∈ Lwill be clear from the context. Next we define generic abstraction for

OCB, called GOCB, based on Π←$ Perm(B) and λ. Figure 8.3.1 illustrates the schematic

view of the encryption-decryption algorithms for GOCB and the complete algorithmic

descriptions is given in Algorithm 8.3.1. For i ∈ N, we will refer Mi, Ai and Ci as

message block, associated data block and ciphertext block. For i ∈ N, we will refer Ui
and Xi as input blocks; Vi and Yi as output blocks; and Si as final block. In GOCB X⊕

and Y⊕ will be referred as the tag input and output block respectively. We will use the

term GPHash3 for the associated data processing phase of GOCB.

Any binary stringX can be mapped uniquely to a block sequence X̂ = (X̂1, . . . , X̂m, X̂∗)
n←−

X , where ` = b|X|/nc, i.e., X̂i are complete blocks (|X̂i| = n) for all i ∈ [`], and X̂∗ is

an incomplete (possibly empty). In the rest of this chapter, we use this methodology to

parse any X ∈ {0, 1}η∗ into block sequences.

Note that, the constructions employ different MGFs for special blocks (last block, check-

sum block etc.) processing. Usually for concrete constructions these MGFs are simple

variants of the usual MGF λ. Similarly the key for the MGF is usually derived from

the underlying random permutation. For the sake of simplicity we will assume that

the MGF key is drawn independently, and the MGFs for special blocks are also defined

independently.

In this chapter, we only focus on the mask generation component and its properties.

This is mainly because GOCB greatly resemble simple variant of ECB mode when

the masking is ignored. Hence both efficiency and security mostly rely on the mask-

generation phase, albeit the two issues are mutually orthogonal. We discuss the two

issues separately starting with efficiency.

8.3.0.1 Mask-generation and Efficiency

As noted before, if we ignore the input masking, GOCB is simply a variant of ECB,

which is arguably the most efficient cryptographic mode of operation, both in hardware

and software. So the MGF should preferably have the following properties:

• Sequential Computation — MGF should be fast enough to compute the mask out-

puts for consecutive inputs. More formally, λ(i), λ(i+ 1), . . . , λ(i+ r − 1) should

be efficiently computable for some r and for any i. Here r can be viewed as a

parameter. One may observe the performance for different choices of r and then

choose the best possible one.

3PHash is a commonly used terminology for the hash component in OCB.



Chapter 8. Random Read Access in OCB 175

Algorithm 8.3.1 GOCB encryption/decryption process applied over associated data A
and plaintext/ciphertext M/C having a and m complete blocks and an incomplete
(possibly empty) block, respectively; λ1 is a keyed (i.e. the key is implicit) mask-
generating function, and λi for 1 < i ≤ 6 are minor variants of λ1, deployed in various
boundary conditions, like incomplete block processing, tag generation etc.

1: function GOCB+
Π,λ(N,A,M )

2: S ← 0n

3: M⊕ ← 0n

4: (A1, . . . , Aa, A∗)
n←− A

5: (M1, . . . ,Mm,M∗)
n←−M

6: for i← 1 to a do
7: Ui ← Ai ⊕ λ5(N, i)
8: Vi ← Π(Ui)
9: S ← S ⊕ Vi

10: end for
11: if |A∗| > 0 then
12: U∗ ← pad(A∗)⊕ λ6(N, a)
13: V∗ ← Π(U∗)
14: S ← S ⊕ V∗
15: end if
16: for i← 1 to m do
17: Xi ←Mi ⊕ λ1(N, i)
18: Yi ← Π(Xi)
19: Ci ← Yi ⊕ λ1(N, i)
20: M⊕ ←M⊕ ⊕Mi

21: end for
22: if |M∗| = 0 then
23: X⊕ ←M⊕ ⊕ λ3(N,m)
24: else
25: X∗ ← λ2(N, ∗)
26: Y∗ ← Π(X∗)
27: C∗ ← Y∗ ⊕ pad(M∗)
28: C∗ ← msb|M∗|(C∗)
29: M⊕ ←M⊕ ⊕ pad(M∗)
30: X⊕ ←M⊕ ⊕ λ4(N,m)
31: end if
32: C ← (C1, . . . , Cm, C∗)
33: Y⊕ ← Π(X⊕)
34: T ← Y⊕ ⊕ S
35: return (C, T )
36: end function

1: function GOCB−Π,λ(N,A,C, T )
2: S ← 0n

3: M⊕ ← 0n

4: (A1, . . . , Aa, A∗)
n←− A

5: (C1, . . . , Cm, C∗)
n←− C

6: for i← 1 to a do
7: Ui ← Ai ⊕ λ5(N, i)
8: Vi ← Π(Ui)
9: S ← S ⊕ Vi

10: end for
11: if |A∗| > 0 then
12: U∗ ← pad(A∗)⊕ λ6(N, a)
13: V∗ ← Π(U∗)
14: S ← S ⊕ V∗
15: end if
16: for i← 1 to m do
17: Yi ← Ci ⊕ λ1(N, i)
18: Xi ← Π−1(Yi)
19: Mi ← Xi ⊕ λ1(N, i)
20: M⊕ ←M⊕ ⊕Mi

21: end for
22: if |C∗| = 0 then
23: X⊕ ←M⊕ ⊕ λ3(N,m)
24: else
25: X∗ ← λ2(N,m)
26: Y∗ ← Π(X∗)
27: M∗ ← Y∗ ⊕ pad(C∗)
28: M∗ ← msb|C∗|(M∗)
29: M⊕ ←M⊕ ⊕ pad(M∗)
30: X⊕ ←M⊕ ⊕ λ4(N,m)
31: end if
32: M ← (M1, . . . ,Mm,M∗)
33: Y⊕ ← Π(X⊕)
34: T ′ ← Y⊕ ⊕ S
35: if T ′ = T then
36: return M
37: else
38: return ⊥
39: end if
40: end function
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Figure 8.3.1: Schematic of GOCB— Top to Bottom: encrypting M when n | |M |;
encrypting M when n - |M |; hashing A when n | |A|; hashing A when n - |A|.



Chapter 8. Random Read Access in OCB 177

• Direct Computation — MGF should be easily computable on any arbitrary input.

In other words, for all i, λ(i) should be efficiently computable without the knowl-

edge of any other mask outputs. This is the usual constraint for hash functions.

Direct computation of masks is an important feature as it leads to features like

random read access and massive parallelism. Given large number of parallel pro-

cessing units (multiple CPU cores or GPUs) GOCB is completely parallel when

the underlying MGF is efficient in direct computation. This holds even when

the message length is not known beforehand, a scenario that is common in data

streams.

• Constant-time Computation — A secondary requirement for any MGF is constant

computation time for all inputs. While this is a secondary requirement as far as

efficiency is concerned, it helps in mitigating a form of side channel attacks called

timing attack [26, 82].

8.3.0.2 Mask-Generation and Security

From the security point of view, earlier works [30, 119, 174] required strong (almost

2−n) AXU and 1-universal (or regular, i.e Pr [H(x) = y] = O(2−n)) property (some time

implicitly) from the underlying MGFs. Since allmost all of the hash functions discussed

in this work are 1-regular, we will implicitly assume that MGF has this property. We

will focus on the more dominant, AXU property. In this setting the advantage is gen-

erally bounded in terms of ε, the AXU bound of MGF. For instance the bound for OCB

is roughly O(σ2ε) respectively; hence the need for O(2−n)-AXU bound. Naturally, both

aes1 and aes2 would suffer significant security loss in the existing setting. This is

probably one of the reasons, these hash functions have not got much attention. Yet an-

other reason is the fact that aes1 and aes2 are defined over restricted domains {0, 1}8

and {0, 1}32 respectively.

8.3.1 Locally-Imperfect XOR Universal Hash Functions

The immediate question in light of the above discussion is as follows:

Can we relax the AXU condition on MGFs to use efficient directly computable

functions like aes1 and aes2, while maintaining comparable security?

We answer this in affirmative by proposing a slightly different universal notion —

Locally-Imperfect XOR Universal (or LIXU) Hash Functions. The idea is to model a hash
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functionH whose differential probability depends on the grouping of the given inputs.

More precisely, we partition the inputs in several disjoint subsets with bounded cardi-

nality, say at most r.4 Now the additional property introduced by LIXU is as follows:

for two inputs say x and y from distinct partitions the differential probability is at most

2−n, and the probability degrades to ε ≥ 2−n, when x and y belong to the same parti-

tion. Formally we define the notion of Locally-Imperfect XOR Universal in Definition

8.3.1.

Definition 8.3.1 (Locally-Imperfect XOR Universal Hash Function). LetH : L×X → B
be a (L,X )-hash function family indexed by the keyspace L. For a fixed r ∈ N and

ε ≥ 2−n, we say that H is an (ε, r)-locally-imperfect XOR universal, or LIXU, hash

function if and only if there exists a partitioning X = P1tP2t· · ·tPk with k ≥ 2, such

that |Pi| ≤ r for i ∈ [k], and for distinct x, y ∈ X , and δ ∈ B,

Pr
L←$L

[HL(x) +HL(y) = δ] ≤

ε if x, y ∈ Pi,
1

2n if x ∈ Pi, y ∈ Pj , i 6= j.

Here r is called the width of H . We say that x, y ∈ X are local pairs (to each other and as

a pair as well) if and only if they belong to the same partition. So a LIXU hash function

behaves as a perfect XOR universal hash function when the inputs are not local pairs,

and behaves as an imperfect (or almost) XOR universal hash function when the inputs

are local pairs. Note that, an (ε, r)-LIXU hash implies an ε-AXU hash, but the vice-versa

may not be true. Further it is rather trivial to establish that any 2−n-AXU hash function

over the domain X is also a (2−n, r)-LIXU hash function for all r ≤ |X | − 1. We note

this simple fact in Proposition 8.3.2.

Proposition 8.3.2. A 2−n-AXU hash H is a (2−n, r)-LIXU hash for all r ≤ |X |− 1, where X
is the domain of H . Notably, H is a (2−n, 1)-LIXU hash function.

In this chapter, we use a specific type of LIXU hash functions defined over the domain

N × N, where the domain is partitioned as follows: (N, i) 6= (N ′, i′) ∈ N × N are said

to be local pairs if and only if N = N ′ and di/re = di′/re. Here, N denotes the nonce

space. We sometime use chunk and partition interchangeably, and for any i ∈ N, we

call di/re the chunk number of i.

8.3.2 LIXU Hash as MGF in GOCB

Previous works on OCB have assumed that the underlying MGF is an AXU hash. We

depart from this setting and employ LIXU hash as MGF. Since LIXU and AXU are not
4In fact we try to minimize the value of r.
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exactly compatible, we will require a slightly different analysis. Particularly the TBC

based abstraction [171] for OCB is not useful here. We now present the main security

result of the chapter, along with an overview of our proof approach. The formal proof

is postponed to Section 8.4.

Theorem 8.3.3 (GOCB NAEAD Bound). For a fixed r ≤ ` ∈ N and ε ≥ 0, let λ be an

(ε, r)-LIXU hash function over N × N. Let A(q, q̃, `, σ, σ̃) be the class of all adversaries that

make q encryption queries consisting of µ message blocks in all with at most ` blocks per query,

and ν associated data blocks in all, and q̃ decryption queries in a NAEAD security game against

GOCBΠ,λ. Then ∀A ∈ A(q, q̃, `, σ) we have, Advnaead
GOCBΠ,λ

(A ) = εnaead, where

εnaead ≤
0.5σ2 + σ̃2

2n
+
qσ + q̃ + 0.5q2

2n − σ
+
σ̃(σ + 3)

2n
+ (σ + 2σ̃)rε+ q̃ε.

Here σ = µ + ν is the total number of blocks in messages and associated data queried in the

encryption queries.

PROOF OVERVIEW — The proof of Theorem 8.3.3 is given in Section 8.4. While we do

get a factor of σrε in the bound for GOCB, the original bound of OCB remains intact

asymptotically if rε = o(2−
n
2 ). To understand why we don’t get any degradation in

security we have to look into the bound more precisely. Generally the OCB bound is

dominated by the probability of collision among the input/output of the underlying

block cipher. As per the earlier analyses the collisions can be bounded in terms of the

AXU bound of λ, which gives σ2ε/2 bound. This evaluates to σ221−n when ε = 2−n.

However when we replace AXU with LIXU the straightforward analysis will result in

security degradation. Instead we first bound the probability of collision between input

blocks which are non-local pairs. Since LIXU hashes are perfectly XOR universal on

non-local pairs we get a bound of σ221−n. Now for each input block there are at most

r − 1 local pairs and there are at most σ input blocks which gives a bound of roughly

rσε.

8.3.3 Instantiating LIXU hash in GOCB

8.3.3.1 Deriving OCB3 from GOCB

We define the mask-generating function used in OCB3 in LIXU setting and derive con-

crete bound for n = 128. OCB3 employs gray code based masking defined using the

gray hash function discussed in Section 8.1. As noted earlier gray is a 2−128-AXU hash

function.
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For OCB3, Krovetz and Rogaway defined the gray function as: For any i ∈ N, grayL(i) =

4γ(i) � L. For a fixed j ∈ [n] (fixed as an application parameter) and N ∈ B \ {0},
f(N) = msbj(N)‖0n−j , and g(N) = lsbj(N). The OCB3 NAEAD advantage [119] can

be obtained from GOCB by instantiating the definition of GOCB as follows:

• L = (L1, L2), where L2 is a keyed function from B to B, with L1 := EK(0) and

∀N ∈ B, L2(N) := stsEK(f(N))(g(N)).

• For i ∈ [2n], and N ∈ B \ {0}:

– λ1(L, N, i) := L2(N)⊕ grayL1
(i); λ5(L, N, i) := grayL1

(i);

– λ2(L, N, i) := L2(N)⊕ grayL1
(i)⊕ L1; λ6(L, N, i) := grayL1

(i)⊕ L1;

– λ3(L, N, i) := L2(N)⊕ grayL1
(i)⊕ 2L1.

– λ4(L, N, i) := L2(N)⊕ grayL1
(i)⊕ 3L1.

We write λi as GRi to emphasize that λi is defined via gray hash function.

Here we have derived L through K, which adds a insignificant factor in the overall ad-

vantage. In [119], all variants of GR were shown to be 2−n-AXU hash over the domain

{0, 1}128. This in combination with Proposition 8.3.2, establishes that GR variants are

(2−n, 1)-LIXU hash. Using Theorem 8.3.3, q ≤ σ, q̃ ≤ σ̃, and assuming σ, σ̃ < 2n−1, we

get the security bound for the original OCB3 design [119].

Corollary 8.3.4. ∀A ∈ A(q, `, σ) we have,

Advnaead
OCB3

E±
K
,GR

(A ) ≤ Advsprp

E±K
(σ + σ̃) +

6.5σ2 + 4σ̃2 + 7σσ̃ + 3σ + 10σ̃

2n
.

8.3.3.2 Instantiating GOCB with aes1 and aes2

We set n = 128 and N ⊂ B, and define

• A1 : Func(B,B)×N × F28 → B as, ∀F ∈ Func(B,B), N ∈ N , i ∈ F28 ,

A1F (N, i) := aes1F (N)(i).

• A2 : Func(B,B)×B×N × F232 → B as, ∀(F,L,N, i) ∈ Func(B,B)×B×N × F232 ,

A2(F,L)(N, i) := aes2(F (N),L)(i).
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Next we show that A1 and A2 are LIXU hash functions for appropriate values of ε and

r. In Lemma 8.3.5 and Lemma 8.3.6 we show that A1 and A2 are (2−96, 28)-LIXU and

(2−113, 232)-LIXU hash functions, respectively. The proofs of these lemmata are given

in section 8.4.

Lemma 8.3.5. If Γ←$ Func(B,B), then A1Γ is a (2−96, 28)-LIXU hash function.

Lemma 8.3.6. If (Γ, L)←$ Func(B,B)× B, then A2Γ,L is a (2−113, 232)-LIXU hash function.

Description of GOCBE,A1 — We define GOCB based on A1 as follows:

• The maximum message and associated data size per query is limited to 26 blocks,

i.e. 1 Kilobytes, and the nonce space is B \ {0}.

• L = F, where F is a keyed function from B to B, where ∀N ∈ B, F(N) := EK(N).

• For i ∈ [26], and N ∈ B \ {0}:

– λ1(F, N, i) := A1F(N, 4i+ 0); and λ5(F, N, i) := A1F(N, 4i+ 0)⊕ EK(0).

– λ2(F, N, i) := A1F(N, 4i+ 1); and λ6(F, N, i) := A1F(N, 4i+ 1)⊕ EK(0).

– λ3(F, N, i) := A1F(N, 4i+ 2);

– λ4(F, N, i) := A1F(N, 4i+ 3);

where 4i denotes the integer multiplication of i with 4.

Here we need to add a factor of (q + 1)(q + σ)2−128 to bound the probability that some

masked input matches with some nonce value. Further a factor of q22−129 is required

for PRF-PRP switch. Using Theorem 8.3.3, q < σ, q̃ < σ̃, and σ, σ̃ < 2127, we get the

security result for GOCBEK ,A1 as in Corollary 8.3.7.

Corollary 8.3.7. ∀A ∈ A(q, q̃, σ) we have,

Advnaead
GOCB

E±
K
,A1

(A ) ≤ Advsprp

E±K
(σ + σ̃) +

6.5σ2 + 4σ̃2 + 7σσ̃ + 2σ + 7σ̃

2128
+
σ + 2σ̃

288
+

q̃

296
.

Description of GOCBE,A2 — GOCBE,A2 can be defined analogously using mask hash

key L = (L1, L2, F ), where L1 = EK(0) and L2 = EK(1). We define GOCB based on A2

as follows:

• The maximum message and associated data size per query is limited to 230 blocks,

i.e. 16 Gigabytes, and the nonce space is B \ {0, 1}.
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• L = (L1,F), where L1 = EK(0) and F is a keyed function from B to B. For all

N ∈ B \ {0, 1}, F(N) := EK(N).

• For i ∈ [230], and N ∈ B:

– λ1(L, N, i) := A2L(N, 4i+ 0); and λ1(L, N, i) := A2L(N, 4i+ 0)⊕ EK(1).

– λ2(L, N, i) := A2L(N, 4i+ 1); and λ2(L, N, i) := A2L(N, 4i+ 1)⊕ EK(1).

– λ3(L, N, i) := A2L(N, 4i+ 2);

– λ4(L, N, i) := A2L(N, 4i+ 3);

where 4i denotes the integer multiplication of i with 4.

Using similar argument as above we can derive the security bound, given in Corollary

8.3.8, for GOCB instantiated with A2.

Corollary 8.3.8. ∀A ∈ A(q, q̃, σ) we have,

Advnaead
GOCB

E±
K
,A2

(A ) ≤ Advsprp

E±K
(σ + σ̃) +

6.5σ2 + 4σ̃2 + 7σσ̃ + 4σ + 9σ̃

2128
+
σ + 2σ̃

281
+

q̃

2113
.

8.3.3.3 Extending the Domain of GOCBE,A1 and GOCBE,A2

The A1 and A2 based instantiations have a restriction on the maximum input length.

This is more prominent in case of GOCBE,A1, which allows message lengths up to 1

KB. Here we give some ways to extend the domain of GOCBE,A1 and GOCBE,A2. Our

general idea remains the same in all the methods. We improve the maximum input

size restriction to roughly 250 bytes or 246 blocks, a usual limit on input size [156]. We

need 46 bits to represent each block of input uniquely. We divide the 46-bit length

representation into two parts i‖j, where j is 6-bit long for GOCBE,A1 and j is 30-bit

long for GOCBE,A2. We will handle the j-value in the same way as before, and employ

different techniques to handle (N, i) input of the mask generating function.

1. DOMAIN EXTENSION VIA THE F FUNCTION: We can consider a keyed function

over larger domain, sayN×[2128]. For example, consider the definition F(N, i) :=

EK(i⊕ EK(N)). This would add an extra O(σ2/2n) term, a rough upper bound to

avoid block cipher input collisions involving i ⊕ EK(N) for some (N, i). This

method can clearly extend the message size to 246 but at the cost of an extra block

cipher call every time the j value resets to zero, plus it needs one more encryption

call for the nonce.
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2. DOMAIN EXTENSION VIA NONCE SIZE REDUCTION: Another way is to reduce

the nonce size to 88 bits and 112 bits for GOCBE,A1 and GOCBE,A2, respectively,

and let F(N, i) := EK(N‖i). This is slightly better than the previous method as

we can save one block cipher call. As before, this adds an extra O(σ2/2n) term, a

rough upper bound to avoid block cipher input collisions.

3. DOMAIN EXTENSION VIA SUM OF LIXU HASH: We explain the method for

GOCBE,A2. But similar technique is also applicable to GOCBE,A1. We modify the

λ function as follows:

– First, we redefine L = (L1, L2,F,F
′), where L1 = EK(0) and L2 = EK(1). The

nonce space isN = {0, 1}n−1 \ {0, 1}, and F and F′ are keyed functions from

N to B, defined as FK(N) = EK(N‖0) and F′K(N) = EK(N‖1).

– Second, λ1(L, N, i‖j) := A2L1,F(N, i) ⊕ A2L2,F(N, j). The other variants are

defined analogously as before. Further for AD processing, we XOR EK(2)

(instead of EK(1)) to the modified λ1 and λ2 values.

It can be easily shown that this modification offers asymptotically similar security

as before.

8.4 Security Proofs

In this section we provide the proof for our main result Theorem 8.3.3, along with the

proofs for Lemma 8.3.5 and Lemma 8.3.6.

8.4.1 Inaptness of the Existing TBC-based Abstraction

In [171], Rogaway introduced a very nice abstraction for OCB like constructions based

on tweakable block ciphers (TBCs). More formally, the TBC abstraction of [171] views

the masked input-output block cipher as a way to construct TBCs from block ciphers

and efficient mask generating functions, called XEX. In this view any OCB like con-

struction can be viewed as an instance of the TBC-based authenticated encryption

called ΘCB, where each encryption TBC call takes a tuple of tweak values (N, i), where

N denotes the nonce and i denotes the block index.

This abstraction simplifies as well as modularizes the proof, as it can be shown (using

results from [171]) that the NAEAD advantage is bounded by the tweakable strong

pseudorandom permutation (TSPRP) advantage of XEX, which is bounded by at most

σ2ε, where σ denotes the total number of TBC calls and ε denotes the AXU bound of
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the underlying MGF. Consequently, this approach was used in several previous works,

most notably [45] and [81].

While the reduction from the NAEAD game for OCB to the TSPRP game for XEX gives

tight estimate on the privacy bounds (exactly same as the TSPRP bound for XEX), the

reduction is rather loose in case of authenticity bound, as noted in [30]. A straightfor-

ward approach gives an authenticity bound of the form O(σ2ε) + O(1/2n) for single

forgery. The first term here is due to the TSPRP advantage of XEX. Here the O(σ2ε)

term is due to the XEX to tweakable random permutation reduction. When extended

to multiple verification queries, this results in a bound of the form O(q̃σ2ε) + O(q̃/2n),

where q̃ denotes the number of verification queries. Clearly the security degrades for

multiple verification queries.

Yet another approach gives a security bound of the form O(σ2ε) + O(σ̃2ε) + O(q̃/2n),

where σ̃ denotes the number of TBC calls in all decryption queries. Here the O(σ2ε)

and O(σ̃2ε) terms are due to the XEX to tweakable random permutation reduction.

A constrained variant of the XEX based abstraction could also be used to get a modu-

larized privacy bound for GOCB. In this abstraction the adversary against tweakable

block cipher is restricted to at most r many queries per chunk number. This restriction

is perfectly fine, as the NAEAD adversary is nonce-respecting for encryption queries

and for each nonce the message length is at most r. This gives a privacy bound of the

form O(σ2/2n) +O(σrε). But the same is not true for authenticity, as the adversary can

make all the decryption queries with tweaks within the same chunk. This results in a

term of the form O(σ̃2ε), which is clearly sub-optimal.

So, we use a more direct approach as also employed in [30]. The proof for Theorem

8.3.3 uses coefficient-H technique.

MORE NOTATIONS: We say a function f : X → Y is partial or restricted, if we know the

values of f on a strict subset of X . This subset is called domain(f). A partial function f

can be viewed as a restriction of f to domain(f). The range of this restricted function is

called range(f). We will treat a partial function as updatable: for some x ∈ B \ domain(f)

and some y ∈ Y , (x, y) may be added to f , so that domain(f) expands to domain(f)∪{x},
and range(f) becomes range(f) ∪{y}.

8.4.2 Proof of GOCB NAEAD Bound (Theorem 8.3.3)

Let O±1 denote the real oracle corresponding to GOCB, and O±0 denote the ideal oracle

corresponding to (Γ,⊥). We start off by setting up the necessary notations related to

the query-response transcript of A . The transcript generated by A consists of
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• Encryption query-response tuples: for i ∈ [q], the i-th encryption query-response

tuple is built of

– Ni: the queried nonce block, such that for any i′ < i, Ni 6= Ni′ .

– Ai: the queried associated data, consisting of ai complete blocks and an in-

complete (possibly empty) block A(i,∗) at the end;

– Mi: the queried message, consisting of mi complete blocks and an incom-

plete (possibly empty) block M(i,∗) at the end;

– Ci: the response ciphertext, such that |Ci| = |Mi|;

– Ti: the response tag block.

• Decryption query-response tuples: for i ∈ [q̃] the i-th decryption query-response

tuple is built of

– Ñi: the queried nonce block. Note that, Ñi’s can be repeated.

– Ãi: the queried associated data, consisting of ãi complete blocks and an in-

complete (possibly empty) block Ã(i,∗) at the end;

– C̃i: the queried ciphertext, consisting of m̃i complete blocks and an incom-

plete (possibly empty) block C̃(i,∗) at the end;

– T̃i: the queried tag block.

– M̃i: the response message, such that |M̃i| = |C̃i|. Note that, the decryption

oracle may return ⊥, in which case M̃i just denotes the unauthenticated de-

crypted message to be used internally.

The internal variables arising in one call to the encryption oracle are analogously as

given in Algorithm 8.3.1 and Figure 8.3.1, while the internal variables from the decryp-

tion oracle are defined identically, but topped with a tilde to differentiate them from

the encryption variables.

Let I and J denote the encryption query indices with incomplete-block message and

associated data respectively. The decryption counterparts are Ĩ and J̃ . Let I = I1 ∪ I2

and O = O1 ∪O2 be multisets, where for all i ∈ [2], Ii and Oi are defined as follows

I1 :=
{
U(i,j) : (i, j) ∈ [q]× [ai]

}
∪
{
U(i,∗) : i ∈ J

}
,

I2 :=
{
X(i,j) : (i, j) ∈ [q]× ([mi] ∪{⊕})

}
∪
{
X(i,∗) : i ∈ I

}
,

O1 :=
{
V(i,j) : (i, j) ∈ [q]× [ai]

}
∪
{
V(i,∗) : i ∈ J

}
,

O2 :=
{
Y(i,j) : (i, j) ∈ [q]× ([mi] ∪{⊕})

}
∪
{
Y(i,∗) : i ∈ I

}
.
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8.4.2.1 Oracle Behavior and Transcript Extension

Consider a modified security game where we let the real oracleO1 reveal all the internal

input and output blocks appearing in the encryption query phase. Consequently we

have to make appropriate behavioral changes in the ideal oracle O0 to release these

internal variables. We describe the sampling behavior of O0 in greater detail in the

subsequent paragraphs. During the sampling O0 might set bad = 1, whereafter its

behavior is undefined.

SAMPLING BEHAVIOR OF O0

Query Phase: For i ∈ [q], on the i-th encryption query, for each j ∈ [mi], C(i,j)←$B;

Ti←$B; and if i ∈ I, C(i,∗)←$B, set C(i,∗) = msb|M(i,∗)|(Ci,∗); return Ci = C(i,1)‖ · · · ‖C(i,∗)

and Ti to A . For i ∈ [q̃], on the i-th decryption query, return ⊥ to A .

Post-query Phase: Let L←$L and Π, a permutation over B, be undefined on all blocks,

i.e domain(Π) = range(Π) = ∅.

Step 1: Extending the encryption query-response tuple — Set the following values:

• for i ∈ [q], j ∈ [mi] set X(i,j) = M(i,j) ⊕ λ1(L,Ni, j) and Y(i,j) = C(i,j) ⊕ λ1(L,Ni, j);

• for i ∈ I, set X(i,∗) = λ2(L,Ni,mi) and Y(i,∗) = C(i,∗) ⊕ pad(M(i,∗));

• for i ∈ [q] \ I, set M(i,⊕) = ⊕mij=1M(i,j) and X(i,⊕) = M(i,⊕) ⊕ λ3(L,Ni,mi);

• for i ∈ I, set M(i,⊕) = ⊕mij=1M(i,j) ⊕ pad(M(i,∗)) and X(i,⊕) = M(i,⊕) ⊕ λ4(L,Ni,mi);

• for i ∈ [q], j ∈ [ai] set U(i,j) = A(i,j) ⊕ λ5(L,Ni, j);

• for i ∈ J , set U(i,∗) = pad(A(i,ai))⊕ λ6(L,Ni, ai);

• set bad = 1, if I or O (the partial multiset containing Y(i,j) values for i ∈ [q] and

j ∈ [mi] ∪ {∗}) contains a non-trivial colliding pair (pair of duplicate elements).

Note that, all colliding pairs are non-trivial at this stage;

• for all i ∈ [q], j ∈ [mi], fix Π(X(i,j)) = Y(i,j), and for all i ∈ I, fix Π(X(i,∗)) = Y(i,∗);

• for all i ∈ [q], j ∈ [ai], fix Π(U(i,j)) = V(i,j)←$B \ range(Π), and for all i ∈ J , fix fix

Π(U(i,∗)) = V(i,∗)←$B \ range(Π);

• for i ∈ [q] \ J , set Si = ⊕aij=1V(i,j);

• for i ∈ J , set Si = ⊕aij=1V(i,j) ⊕ V(i,∗);

• for i ∈ [q] set Y(i,⊕) = Si ⊕ Ti.
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• set bad = 1, if O (the complete multiset) contains a non-trivial colliding pair (pair

of duplicate elements).

• for i ∈ [q], fix Π(X(i,⊕)) = Y(i,⊕).

Note that, the partial sampling of Π remains permutation-compatible in step 1 as long

as bad = 0.

Step 2: Extending the decryption query-response tuple — Set the following values:

• at the start all intermediate variables are set as undefined.

• for i ∈ [q̃], j ∈ [m̃i], set Ỹ(i,j) = C̃(i,j)⊕λ1(L, Ñi, j); if i ∈ Ĩ, set X̃(i,∗) = λ2(L, Ñi, m̃i).

• for i ∈ [q̃], j ∈ [m̃i], if Ỹ(i,j) ∈ range(Π) then set X̃(i,j) = Π−1(Ỹ(i,j)) and M̃(i,j) =

X̃(i,j) ⊕ λ1(L, Ñi, j); if i ∈ Ĩ and X̃(i,∗) ∈ domain(Π), then set Ỹ(i,∗) = Π(X̃(i,∗))

and M̃(i,∗) = msb|C̃(i,∗)|
(Ỹ(i,∗)) ⊕ C̃(i,∗); if M̃i is defined then set X̃(i,⊕) = M̃(i,⊕) ⊕

λ3(L, Ñi, m̃i).

• for i ∈ [q̃], j ∈ [ãi], set Ũ(i,j) = Ã(i,j)⊕λ5(L, Ñi, j); if i ∈ J̃ , set Ũ(i,∗) = λ6(L, Ñi, ãi).

• for i ∈ [q̃], j ∈ [ãi], if Ũ(i,j) ∈ domain(Π) then set Ṽ(i,j) = Π(Ũ(i,j)); if Ṽi is defined

then set Ỹ(i,⊕) = S̃i ⊕ T̃i.

• At this stage all those intermediate variables, which can be derived through the

MGF key L, and adversary’s query, are completely determined. Also, some other

variables are trivially derived due to the extended encryption transcript.

• set bad = 1, if there exists (i, j) ∈ [q̃]× ([m̃i] ∪ {∗,⊕}), and one of the following is

true:

– ∃(i′, j′) ∈ [q]× ([mi′ ]∪{∗,⊕}) such that (Ñi, C̃(i,j)) 6= (Ni′ ,C(i′,j′)) and Ỹ(i,j) =

Y(i′,j′).

– ∃(i′, j′) ∈ [q]× ([ai′ ] ∪ {∗}) such that Ỹ(i,j) = V(i′,j′).

• set bad = 1, if there exists i ∈ [q̃]× ([ãi] ∪ {∗}), and one of the following is true:

– ∃(i′, j′) ∈ [q]× ([mi′ ] ∪ {∗,⊕}) such that Ũ(i,j) = X(i′,j′).

– ∃(i′, j′) ∈ [q] × ([ai′ ] ∪ {∗}) such that (Ñi, Ã(i,j)) 6= (Ni′ , Ã(i′,j′)) and Ũ(i,j) =

U(i′,j′).

Extend the transcript by including all the internal variables computed thus far and

return the extended transcript to A .
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IDENTIFYING THE BAD TRANSCRIPTS: Let Ω denote the set of all realizable transcripts.

We say that ω ∈ Ω is a bad transcript if it causes bad = 1. In other words, we say that ω

is bad if one of the following events occur:

EEcoll:

– ∃ (i, j) ∈ [q] × [mi] ∪{∗,⊕} , (i′, j′) ∈ [q] × [mi′ ] ∪{∗,⊕} : (i, j) 6= (i′, j′) ∧
X(i,j) = X(i′,j′).

– ∃ (i, j) ∈ [q]× [ai] ∪{∗} , (i′, j′) ∈ [q]× [ai′ ] ∪{∗} : (i, j) 6= (i′, j′) ∧ U(i,j) =

U(i′,j′).

– ∃ (i, j) ∈ [q]× [mi] ∪{∗,⊕} , (i′, j′) ∈ [q]× [ai′ ] ∪{∗} : X(i,j) = U(i′,j′).

– ∃ (i, j) ∈ [q]× [mi]∪{∗} , (i′, j′) ∈ [q]× [mi′ ]∪{∗} : (i, j) 6= (i′, j′)∧Y(i,j) =

Y(i′,j′).

ETcoll:

– ∃ i ∈ [q], (i′, j′) ∈ [q]× [mi′ ] ∪{∗} : Y(i,⊕) = Y(i′,j′).

– ∃∗ i, i′ ∈ [q] : Y(i,⊕) = Y(i′,⊕).

– ∃ i ∈ [q], (i′, j′) ∈ [q]× [ai′ ] ∪{∗} : Y(i,⊕) = V(i′,j′).

DEcoll:

– ∃ (i, j) ∈ [q̃] × [m̃i] ∪ {∗} , (i′, j′) ∈ [q] × [mi′ ] ∪ {∗,⊕} : (Ñi, C̃(i,j)) 6=
(Ni′ ,C(i′,j′)) ∧ Ỹ(i,j) = Y(i′,j′).

– ∃ (i, j) ∈ [q̃]× [m̃i] ∪{∗} , (i′, j′) ∈ [q]× [ai′ ] ∪ {∗} : Ỹ(i,j) = V(i′,j′).

– ∃ (i, j) ∈ [q̃]× [ãi]∪{∗} , (i′, j′) ∈ [q]× [ai′ ]∪{∗} : (Ñi, Ã(i,j)) 6= (Ni′ ,A(i′,j′))∧
Ũ(i,j) = U(i′,j′).

– ∃ (i, j) ∈ [q̃]× [ãi] ∪{∗} , (i′, j′) ∈ [q]× [mi′ ] ∪{∗,⊕} : Ũ(i,j) = X(i′,j′).

DEFcoll:

– ∃ i ∈ [q̃], i′ ∈ [q] : (Ñi, Ãi, T̃i) = (Ni′ ,Ai′ ,Ti′) ∧ C̃i = C
[m̃i]
i′ ∧ X̃(i,⊕) ∈ I .

DDFcoll:

– ∃ (i, j) ∈ [q̃] × [m̃i] ∪ {∗} , i′ ∈ [q] : (Ñi, Ãi, C̃i, T̃i) = (Ni′ ,Ai′ ,C
[m̃i]
i′ ,Ti′) ∧

X̃(i,⊕) = X̃(i,j).

– ∃ (i, j) ∈ [q̃] × [ãi] ∪ {∗} , i′ ∈ [q] : (Ñi, Ãi, C̃i, T̃i) = (Ni′ ,Ai′ ,C
[m̃i]
i′ ,Ti′) ∧

X̃(i,⊕) = Ũ(i,j).

– ∃ i ∈ [q̃], ∃∗j, j′ ∈ [m̃i] ∪{∗,⊕} : Ỹ(i,j) = Ỹ(i,j′).
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Let Ωbad be the set of all transcripts which are bad and Ωgood = Ω \ Ωbad. We bound

ipO0
[Ωbad] to O(σ22−n + rσε + qσ2−n + q22−n + σ̃σ2−n + σ̃rε + σ̃2−n + q̃ε) in Lemma

8.4.1.

Lemma 8.4.1.

Pr [Θ0 ∈ Ωbad] ≤ 0.5σ2

2n
+
σ̃2

2n
+
qσ + 0.5q2

2n − σ
+
σ̃(σ + 3)

2n
+ (σ + 2σ̃)rε+ q̃ε.

Proof. We bound the probability of getting a bad transcript as follows:

Pr [Θ0 ∈ Ωbad] = Pr [EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll ∨ DDFcoll]

≤ Pr [EEcoll] + Pr [ETcoll | ¬EEcoll]

+ Pr [DEcoll|¬(EEcoll ∨ ETcoll)]

+ Pr [DEFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll)]

+ Pr [DDFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll)]

BOUNDING Pr [EEcoll]: Let P and Q be a colliding pair. We bound the probability in

two cases:

Case 1: The colliding pair is a non-local pair — As λ is a LIXU hash function, we can

bound the probability of this case by 2−n. Further we have at most σ(σ − 1)/2 many

such pairs. Hence

Pr [EEcoll ∧ Case 1] ≤ σ2

2n+1
.

Case 2: The colliding pair is a local pair — This means that the colliding pair must belong

to a single message or associated data. We can have two cases: (2.1) The colliding pair

belongs to the i-th message; (2.2) The colliding pair belongs to the i-th associated data.

Without loss of generality we assume case (2.1). Let ni = bmi/rc and ri = mi − nir.

As λ is an (ε, r)-LIXU hash function, we can bound the probability of a fixed pair by ε.

Hence

Pr [EEcoll ∧ Case 2.1] ≤
q∑
i=1

ni∑
j=1

(
r

2

)
ε+

q∑
i=1

(
ri
2

)
ε

1
≤ r′ε

q∑
i=1

r · ni +

q∑
i=1

(
ri
2

)
ε

2
≤ r′µε−

(
r′ε

q∑
i=1

ri −
q∑
i=1

(
ri
2

)
ε

)
3
≤ r′µε.
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Here r′ = (r−1)/2; 1 to 2 follows from rni = mi− ri and
∑
mi = µ; 2 to 3 follows from

the fact that (r − 1)ri ≥ ri(ri − 1) for all i. Similarly the probability in case (2.2) can be

bounded to r′νε. Hence the total probability in case 2 is bounded by r′σε.

Combining case 1 and 2, we have

Pr [EEcoll] ≤ σ2

2n+1
+ rσε.

BOUNDING Pr [ETcoll | ¬EEcoll]: This event bounds the probability that the check-

sum output block collides with some previous output block given that no other in-

put/output collision occurred. At this instant at most σ = µ + ν many points are

defined for Π, whence we can have at most qσ+ q2/2 many possible colliding pairs. So

we have,

Pr [ETcoll | ¬EEcoll] ≤ qσ

2n − σ
+

q2

2(2n − σ)
.

Bounding Pr [DEcoll|¬(EEcoll ∨ ETcoll)]: This event bounds the probability that some

intermediate output (Ỹ(i,j)) or input (Ũ(i,j)) input block non-trivially belongs in O or I ,

respectively. First, suppose Ỹ(i,j) belongs toO for some (i, j) ∈ [q̃]×[m̃i]. Now as in case

of EEcoll above: i) the colliding encryption block can either be a non-local pair of (i, j),

in which case we bound the probability to at most σ/2n; or ii) the colliding encryption

block can be a local pair of (i, j), in which case we bound the probability to at most

rε. Since there are at most µ̃ many decryption ciphertext blocks, the probability that

there exists (i, j) ∈ [q̃] × [m̃i], such that Ỹ(i,j) belongs in O non-trivially is bounded by

µ̃σ/2n + µ̃rε. Similarly, one can bound the probability that there exists (i, j) ∈ [q̃]× [ãi],

such that Ũ(i,j) belongs in I non-trivially to at most ν̃σ/2n + ν̃rε. Combining the two

cases, we have

Pr [DEcoll|¬(EEcoll ∨ ETcoll)] ≤ σ̃σ

2n
+ σ̃rε.

Bounding Pr [DEFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll)]: This case bounds the probabil-

ity that some decryption checksum input block collides with some encryption input

block with a restriction that the decryption input blocks must all be defined. In this

case we have X̃(i,⊕) =
∑m̃i

j=1 M̃(i,j) ⊕ λ3(L, Ñ, m̃i). Now we can have two cases: i) the

checksum block collides with X(i′,⊕), which can be generously bounded by ε (assuming

(Ñi, m̃i) and (Ni′ ,mi′) are local pair); and ii) the checksum block collides with any other

X(i′,j′), in which case we bound the probability by 2−n using the 1-universal property

of λ. In summary, we have

Pr [DEFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll)] ≤ q̃

2n
+ q̃ε.
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Bounding Pr [DDFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll)]: This case simply bound

the probability that there is no collisions within a decryption query. Let us fix a decryp-

tion query index i ∈ q̃. Then the first case is bounded by at most m̃i2
−n; the second case

is bounded by at most ãi2−n; the third case is bounded by at most m̃i(m̃i−r)2−n+m̃irε.

On combining the three cases, we have

Pr [DDFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll)] ≤ 2σ̃

2n
+
σ̃2

2n
+ σ̃rε.

The result follows by combining all the individual bounds above, and simplifying us-

ing q̃ ≤ σ̃.

RATIO OF INTERPOLATION PROBABILITIES: Fix an arbitrary transcript ω ∈ Ω \Ωbad. In

Lemma 8.4.2, we show that the ratio of real to ideal interpolation probabilities for ω is

at least (1−O(q̃2−n)).

Lemma 8.4.2. For any ω ∈ Ω \ Ωbad, we have

Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥
(

1− q̃

2n − σ

)
.

Proof. In O0, for encryption phase: first µ + q ciphertext and tag outputs are sampled

in with replacement fashion, followed by the sampling of ν output blocks in without

replacement manner from a subset of B of size (2n−µ) (Π is already defined on µmany

input-output blocks); for decryption phase the oracle always returns ⊥. Hence

ipO0
[ω] =

1

(2n)µ+q(2n − µ)ν
. (8.9)

In O1, for any ω we denote the encryption tuples by ωe and the decryption tuples by

ωd. Then we have

Pr [Θ1 = ω] = Pr
O1

[ωe, ωd]

= Pr
O1

[ωe]× Pr
O1

[ωd | ωe]

= Pr
O1

[ωe]×
(

1− Pr
O1

[¬ωd | ωe]
)

(8.10)

where ωd = (Ñi, Ãi, C̃i, T̃i,⊥)i∈[q̃], as the ideal oracle always returns ⊥ on decryption

queries. Note that, we have slightly abused the notation to use ¬ωd as the event that:

for some i ∈ [q̃] the i-th decryption query successfully decrypts.

For encryption tuples, exactly µ+ ν + q many calls are made to Π: one for each of the µ

message blocks, one for each of the ν associated data blocks; and one for each of the q
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tags. As σ = µ+ ν we have

Pr
O1

[ωe] =
1

(2n)σ+q
. (8.11)

Now we upper bound the probability of ¬ωd. It is enough to bound the probability for

a fixed index i ∈ [q̃] corresponding to a successful decryption query. By union bound,

the probability of ¬ωd is at most q̃ times more than the single forgery probability. For

simplicity, we bound the probability for i ∈ [q̃] \ (Ĩ ∪ J̃ ). For i ∈ Ĩ ∪ J̃ , we get similar

bounds. Note that, the adversary succeeds in forgery if the adversary somehow makes

the i-th query in such a way that the following equation holds.

Π(X̃(i,⊕))⊕ Ỹ(i,⊕) = 0. (8.12)

Now based on the i-th decryption query we can have different cases:

Case 1: ∃j ∈ [q], Ñi = Nj — Based on C̃i we can have two subcases:

Subcase 1.1: C̃i = C
[m̃i]
i′ — In this case M̃(i,⊕) is pre-determined as ⊕m̃ik=1M(i′,k). Suppose

m̃i = mi′ , i.e. the two ciphertexts are exactly the same. Then we must have some j such

that Ã(i,j) 6= A(i′,j), otherwise i-th decryption query is a duplicate of i′-th encryption

query. Since the transcript is good, Ũ(i,j) is fresh. So, by exploiting the conditional

randomness of Π we can bound the probability to at most 1/(2n − σ). Now suppose

C̃i is a proper prefix of Ci′ , then we must have a fresh X̃(i,⊕) (as the transcript is good),

whence we can again bound the probability to at most 1/(2n − σ).

The two cases discussed above are mutually exclusive, hence the probability that the

adversary forges in subcase 2.1 is at most 1/(2n − σ).

Subcase 1.2: C̃i 6= C
[m̃i]
i′ — In this case there exists at least one k ∈ [m̃i] such that C̃(i,k) 6=

C(i′,k). We consider first such block C̃(i,k). Since the transcript is good, we must have a

fresh Ỹ(i,k). Observe that we can rewrite Eq. (8.12) as

Π−1(Ỹ(i,k)) = Π−1(Ỹ(i,⊕))⊕ δ ⊕ λ3(L, Ñi, m̃i),

where δ denotes the checksum of all the blocks of i-th query, except the k-th block.

Again, by conditioning on all points except Ỹ(i,k), we bound the probability of this case

by 1/(2n − σ).

Case 2: ∀j ∈ [q], Ñi 6= Nj : In this case Ñi has not been used for mask generation till

now. Without loss of generality, we assume that m̃i ≥ 1. Since the transcript is good,

we must have a fresh Ỹ(i,1). Now using a similar line of argument as in sub case 1.2 we

bound the probability of this event by 1/(2n − σ).
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Note that, case 1.1, case 1.2 and case 2 are all mutually exclusive so we can take the

maximum over all three. As σ ≥ ai + aj we have

Pr
O1

[¬ωd | ωe] ≤
q̃∑
i=1

1

2n − σ
≤ q̃

2n − σ
(8.13)

On substituting (8.11) and (8.13) in (8.10) and dividing the result by (8.9) we have

ipO1
[ω]

ipO0
[ω]
≥ (2n)µ+q · (2n − µ)ν

(2n)σ+q

(
1− q̃

2n − σ

)
≥ (2n)q

(2n − σ)q

(
1− q̃

2n − σ

)
≥
(

1− q̃

2n − σ

)
.

We get the desired result using Lemma 8.4.1, Lemma 8.4.2 and Corollary 2.2.2.

8.4.3 Proof of Lemma 8.3.5 and Lemma 8.3.6

The proofs of these lemmata are quite similar. We give the proof for Lemma 8.3.5, while

the proof for Lemma 8.3.6 can be obtained analogously.

Fix distinct (N, i), (N ′, i′) ∈ N × F28 and δ ∈ B. Now we have two cases:

Case 1: (N, i) and (N ′, i′) are local pairs — We know that N = N ′ and i 6= i′. Hence,

Pr
[
A1Γ(N, i)⊕ A1Γ(N ′, i′) = δ

]
= Pr

[
aes1Γ(N)(i)⊕ aes1Γ(N)(i

′) = δ
]
≤ 1

296
,

where the last inequality follows from Lemma 8.2.4.

Case 2: (N, i) and (N ′, i′) are not local pairs — We know that N 6= N ′. Hence,

Pr
[
A1Γ(N, i)⊕ A1Γ(N ′, i′) = δ

]
= Pr

[
aes1Γ(N)(i)⊕ aes1Γ(N ′)(i

′) = δ
]

≤ Pr
[
Γ(N) = 1-AESRD−1(aes1Γ(N ′)(i

′)⊕ δ)⊕ i
]

≤ 1

2128
.

The result follows from the bounds in case 1 and case 2.
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8.5 Software Performance

In this section, we present software implementation of GOCB instantiated with AES-

128 as the underlying block cipher, and A1 and A2 as the underlying MGFs, and com-

pare the performance of the proposed designs against the standard OCB3-AES-128.

We do the benchmarking in two cases: i) sequential processing (the conventional im-

plementation), and ii) random read access (introduced in this chapter).

IMPLEMENTATION — We reuse the optimized C code of OCB3 [119] by Krovetz. Fur-

ther, we introduce minimal changes, as required, over the OCB3 code to generate the

C code for GOCBAES-128,A1, and GOCBAES-128,A2. We also reuse the time measurement

mechanism as used in [119]. In summary, we utilized the hardware support on our

benchmarking platform for Intel’s SSE4 vector instructions [94], Intel’s pclmulqdq in-

struction for multiplication over F2128 , and Intel’s AES-NI library [82] for operations

involving AES-128 round functions. We made some simplifying assumptions for the

implementations:

• message length is treated to be equal to the length of the associated data, and

• all messages and associated data are assumed to have complete blocks.

PLATFORM — We performed the benchmarking on:

• Intel Core i7-6500U “Skylake” (2.5 GHz with 64 KB L1 cache, 256 KB L2 cache, 4

MB L3 cache) with Ubuntu 16.04 LTS (kernel version 4.4),

which supports Intel’s SSE4 vector instructions [94], standard AES-NI instructions [82]

and pclmuldq [83], the carry-less multiplication instruction.

SETUP — The tests for benchmark were compiled using gcc version 5.4, with opti-

mization flag -O3, and instruction set architecture flag -march=native (as instructed

in [119]). All the tests were run on isolated core, after turning off processor frequency

scaling and power management options such as Intel’s Turbo Boost and Hyper-Threading

technologies. The reference baseline performance for AES-128, using AES-NI instruc-

tion set, is presented in Table 8.5.1. All performance figures presented are throughputs,

in units of cycles-per-byte (CPB).

TESTING METHODOLOGY — Following [119], we measure the CPB value for every

message length from 1 to 1024 bytes, as well as 1500 and 4096 bytes. To avoid any dis-

crepancies arising due to memory subsystem, we execute warm up runs so that the all
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Table 8.5.1: Baseline CPB value of AES-128 using AES-NI in Skylake architecture.

Microarchitecture Encryption
(CPB)

Intel Core i7-6500U “Skylake” 0.66

code and data is in the cache before benchmarking begins. To capture the average cost

of encryption, we use the rdtsc instruction — a time-stamp counter available on Sky-

lake processors — to time encryption of the same message: i) 64 times for sequential

processing; ii) 1536 times for random access. Note that, we average over a larger num-

ber of repetitions in random access case to get an appreciable measurement for a single

block encryption. The median of 15 such averaged values is reported as the number

of cycles. The cycles per byte value is obtained by dividing the median value by the

length of the corresponding message.

Table 8.5.2: Performance comparison between sequential implementations of OCB3-
AES-128, GOCBAES-128,A1, and GOCBAES-128,A2. The performance figures presented

are throughputs, in units of cycles-per-byte (CPB).

Length OCB3-AES-128 GOCBAES-128,A1 GOCBAES-128,A2

128 bytes 1.48 2.11 2.15

256 bytes 1.15 1.41 1.45

512 bytes 0.85 1.07 1.10

1024 bytes 0.75 0.90 0.93

4096 bytes 0.68 0.77 0.81

Table 8.5.3: Summary of IPI values for OCB3-AES-128, GOCBAES-128,A1, and
GOCBAES-128,A2.

OCB3-AES-128 GOCBAES-128,A1 GOCBAES-128,A2

IPI: 1.05 1.24 1.28

SEQUENTIAL PROCESSING: RESULTS AND DISCUSSION — Table 8.5.2 summarizes

the CPB values for OCB3-AES-128, GOCBAES-128,A1, and GOCBAES-128,A2, for mod-

erate to large message lengths, in sequential processing. Following [119], we also

present IPI (Internet Performance Index) values — a weighted average CPB vlaue for

usual message lengths observed over internet — in Table 8.5.3, for OCB3-AES-128,

GOCBAES-128,A1, and GOCBAES-128,A2. As per our experiments, OCB3 with 10 rounds

of AES-128 is approximately, 9% and 10% faster than OCB3 with 11 and 12 rounds,

respectively, of AES-128. One may think that GOCBAES-128,A1 and GOCBAES-128,A2

should have similar degradation in performance. But the IPI clearly indicates that the

A1 and A2 variants are much more slower, approximately 18% and 22%, respectively,

than OCB3 over usual internet data. This is mainly due to the lower masking (just after

encryption), which is the contentious instruction that breaks the pipelining benefits.

However, the important point to note is that for large messages (i.e. ≥ 4096 bytes),

which is our main area of focus, the CPB values for GOCBAES-128,A1 and GOCBAES-128,A2
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tend towards the CPB values for OCB3-AES-128 with 11 and 12 rounds, respectively.

Specifically, we have observed that OCB3-AES-128 with 11 and 12 rounds have 0.74

and 0.81 CPBs, respectively, for 4096 bytes message. This is quite close to the CPB val-

ues achieved by GOCBAES-128,A1 and GOCBAES-128,A2, i.e. 0.77 and 0.81, respectively.

Beyond this point the CPB values for GOCBAES-128,A1 and GOCBAES-128,A2 are expected

to saturate and follow the CPB values of OCB3-AES-128 with 11 and 12 rounds, re-

spectively. In other words, for messages with length≥ 4096 bytes, GOCBAES-128,A1 and

GOCBAES-128,A2 are only ≈ 10% and ≈ 20% slower than OCB3.

Table 8.5.4: Summary of CPB values for OCB3-AES-128, GOCBAES-128,A1, and
GOCBAES-128,A2 to process a single block of data in random access.

OCB3-AES-128 GOCBAES-128,A1 GOCBAES-128,A2

3.93 3.12 3.29

RANDOM ACCESS: RESULTS AND DISCUSSION — To the best of our knowledge, op-

timized 128-bit field multiplication algorithms (using pclmulqdq) are very close to 5

rounds of AES (using AES-NI) in terms of performance. Thus, theoretically one would

expect that GOCBAES-128,A1, and GOCBAES-128,A2 will have significantly better random

access performance as compared to OCB3, which requires a 128-bit field multiplication.

GOCBAES-128,A1 and GOCBAES-128,A2 would require close to 44 and 48 cycles, respec-

tively, for AES round calls, as 1-round AES call requires 4 cycles (latency) in Skylake.

Further, roughly 4 cycles are required to create the initial masking state. So, theoret-

ically GOCBAES-128,A1 and GOCBAES-128,A2 are expected to have approximately 3-3.1

and 3.2-3.3 CPB. On the other hand, OCB3 requires close to 60 cycles for field mul-

tiplication and the AES call. Apart from this approx. 3 cycles are required for gray

code generation. So, OCB3 is expected to have around 3.9-4 CPB. In other words,

GOCBAES-128,A1 and GOCBAES-128,A2 are expected to be close to 25% and 20%, respec-

tively, better than OCB3 in terms of random access. Note that, we have ignored the

overhead due to nonce processing. This is reasonable given the assumption that ran-

dom read/write does not span across different messages.

Table 8.5.4 summarizes the CPB values to process an arbitrary (random access) block

using OCB3-AES-128, GOCBAES-128,A1, and GOCBAES-128,A2. Clearly, the experimental

data justifies the theoretical speedup described above.



Appendix A

Graphs and Probability Theory

A.1 Directed Edge-Labeled Graphs

DIRECTED EDGE-LABELED GRAPH: A directed edge-labeled graph is a pair G :=

(V, E) with E ⊆ V × V × L where V is the set of vertices, L is the set of edge labels,

and E is the set of edges along with their corresponding labels. We write u a−→ v to

mean that (u, v, a) ∈ E . By a slight abuse of notation, E also denotes the set of unla-

beled edges. For any graph G, we write V(G) and E(G) to denote the vertex set and

edge set of G.

An undirected (edge-labeled) graph is a special case of directed (edge-labeled) graph where

E is a set of two-sets,1, i.e., the edges (u, v) and (v, u) are denoted by a two-set {u, v}.
For brevity, we extend the notation of ordered edge (u, v) for undirected graphs as well.

When viewed as the set of unlabeled edges, E is a multiset. Recall that µ denotes the

multiplicity function 2.1.

We say, that a graph has parallel edges between two vertices u and v, if (u, v) ∈ E and

µ(E , (u, v)) ≥ 2. We say, that a graph has self loop on vertex u, if (u, u) ∈ E .

SIMPLE GRAPH: A graph G is called simple if G has no parallel edges and self loops.

A graphH is called the subgraph of another graph G if V(H) ⊆ V(G) and E(G) ⊆ E(G).

Definition A.1.1 (Isomorphism). Let G1 = (V1, E1) and G2 = (V2, E2) be two directed

edge-labeled graphs. A function α : V1 → V2 is an isomorphism from G1 to G2 if α is

a bijection and (u, v, a) ∈ E1 if and only if (α(u), α(v), a) ∈ E2. In this case, we write

G1
∼= G2.

1A set with cardinality 2.
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A.1.1 Degree of a Vertex

For a directed edge e := (u, v), vertex u is called the predecessor of v, and v is called the

successor of u. For all vertex v, we define two sets:

1. Predecessor set of a vertex v is nbd(∗ → v) := {u : (u, v) ∈ E}.

2. Successor set of a vertex v is nbd(v → ∗) := {u : (v, u) ∈ E}.

By extending the definitions to undirected graph, we see that nbd(∗ → v) = nbd(v → ∗)
(the order does not matter).

Definition A.1.2 (Degree). In-degree degin(v) of a vertex v is defined as degin(v) =

|nbd(∗ → v)|. Similarly, out-degree degout(v) is defined as degout(v) = |nbd(v → ∗)|.

In a directed graph G, degree deg(v) of v ∈ V(G) is defined as the sum of degin(v) and

degout(v), i.e., deg(v) = degin(v) + degout(v).

In an undirected graph G, degree deg(v) of v ∈ V(G) is defined as deg(v) = degin(v) =

degout(v).

A.1.2 Walk, Path, Cycle and Component

We define these terms for directed edge-labeled graphs. They can be analogously de-

fined for undirected graphs as well.

Definition A.1.3 (Walk). A walk of length s is defined as a vertex sequenceW := (W0, . . . ,Ws),

such thatWi−1
ai−→Wi for all i ∈ [s]. The sequence as = (a1, . . . , as) is called the label of

W . We also say that W is an as-walk. Any subwalk of W (s] is a contiguous subsequence

W [a...b] where a ≤ b ∈ (s].

A walk W (s] is said to be: a path if it has s + 1 distinct vertices, i.e., Wi 6= Wj for all

i < j ∈ (s]; a cycle if it has at most s distinct nodes and Ws = W0. Note that, a self loop

(or simply a loop) is also a cycle with s = 1.

A graph G is called connected if for any two distinct vertices u, v ∈ V(G), there exists a

path W (s] such that W0 = u and Ws = v. Any connected subgraph C of G is called a

connected component (or simply component).
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A.2 Some Basic Results in Probability Theory

In the following, we assume reader’s acquaintance with basic discrete probability the-

ory. See Feller [69] for a primer on basic probability theory.

A.2.1 Bonferroni’s Inequalities

For a finite2 collection of events A1, A, . . . , An, we define S1 :=
∑

i∈[n] Pr [Ai], S2 :=∑
i<j∈[n] Pr [Ai ∩ Aj ], and Sk :=

∑
i1<···<ik∈[n] Pr [Ai1 ∩ · · · ∩ Aik ] for all k ∈ [3 . . . n]. Then,

for odd k ∈ [n], we have

Pr

 ⋃
i∈[n]

Ai

 ≤∑
j∈[k]

(−1)j−1Sj ,

and for even k ∈ [2 . . . n], we have

Pr

 ⋃
i∈[n]

Ai

 ≥∑
j∈[k]

(−1)j−1Sj .

The equality holds for k = n, and the resulting identity is the principle of inclusion-

exclusion.

2The inequalities hold for countable collections. However, for our uses just the finite case will suffice.
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