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Abstract

Cryptanalysis of Iterated Hash and Its Variants

by Ashwin Jha

The subject of this thesis is the cryptanalysis of iterated hash function and its variants.

In particular, we analyse these designs on three security properties of hash functions,

namely, preimage resistance, second preimage resistance and herding attack resistance.

The iterated hash design is the most popular hash function design. Naturally, it is the

most studied design as well. In this thesis, we try to do a comprehensive survey of

attacks under random oracle model, on the aforementioned security goals of the iterated

hash design and its variants.

Structures play a major role in constructing attacks on the iterated hash functions. Here,

we are proposing three new structures, viz., chain, multi-pipe expandable message set

and rho structure. The chain structure is used to reduce the complexity of herding attack

on iterated hash from O(22n/3) to O(2n/2). The multi-pipe expandable message set and

rho structure are used in our analysis of the zipper hash. We also analyse the security

of concatenated hash under cetain weakness assumptions on the underlying compression

functions.
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Chapter 1

Hash Functions - An Introduction

Historically, the term cryptography has been associated with the study and design of

techniques for secure communication in the presence of third parties called adversaries

or eavesdroppers. In 1976, a seminal paper titled New Directions in Cryptography [6] by

Diffie and Hellman identified the requirement of data integrity, authentication and non-

repudiation in cryptographic protocols. Modern cryptography has incorporated all these

elements along with the traditional need for data confidentiality. Cryptographic hash

function is an important primitive in modern cryptography which has a wide array of

use in achieving information security goals like integrity, authentication, confidentiality

etc.

In this thesis, we study the cryptanalysis (cryptographic analysis for weaknesses) of

some cryptographic hash function constructions. Cryptographic hash function is an

efficiently computable function that maps a variable length string (message) to a fixed

length string (digest), with additional security features such as collision resistance (hard

to find two different messages with same hash digest) and one-wayness (hard to invert

the hash function on a given hash value). Some popular examples of cryptographic hash

functions include MD4, MD5 [7], SHA-1 [8], SHA-2, SHA-3, Skein and BLAKE. In this

thesis, whenever we use the term hash function, we implicitly mean a cryptographic hash

function. Hash functions have important practical applications in information security

verticals such as digital signatures [9], encryption [10], message authentication codes

(MACs) [11] and several new cryptographic protocols like password hashing [12] and

bitcoins [13]. They can also be employed as ordinary hash functions, to index data

in hash tables, for digital fingerprinting, to detect duplicate data or uniquely identify

files, construction of caches, efficient data structures (such as Bloom filters [14]) and as

checksums to detect accidental data corruption.

1
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Apart from collision resistance, cryptographic hash functions need certain additional

features like one-wayness or preimage resistance and second preimage resistance. Differ-

ent cryptographic protocols exploit different security properties of hash functions. One

of the main application of hash functions is in domain extension which exploits the fact

that a hash function can map arbitrary length strings to fixed length strings with low

collision probability. So, designers of some other primitives do not need to consider

variable length strings. They can simply use hash function as a preprocessor. Another

important property is the preimage resistance, i.e., given a hash output it should be

computationally hard for an adversary to compute the preimage. In other words, the

hash function should be one way.

In section 1.1 we give an informal view of the security properties of a hash function

that an adversary will try to attack and some known models of attack. In section 1.2

we have briefly discussed various applications of hash functions to emphasize the need

for secure hash function constructions. In section 1.3 we discuss relevant works and

give a motivation for the problem that we study in this thesis. Section 1.4 lay out the

organization of the thesis.

1.1 Security Properties and Models of Attack

In this section, we will briefly discuss the security properties that are desired from a

hash function. We will also review some known models of attack.

1.1.1 Security Properties

A cryptographic hash function requires certain additional features other than that in a

normal hash function. Most of the security requirements depend upon the particular

application of hash functions. However, three basic properties as described below are

always desirable. For a hash function H mapping D to R,

1. Collision Resistance: It should be hard to find two messages M,M ′ ∈ D such that

M 6= M ′ and H(M) = H(M ′).

2. Preimage Resistance: Given a hash value h ∈ R, it should be hard to find M ∈ D
such that H(M) = h.

3. Second Preimage Resistance: Given a message M ∈ D, it should be hard to find

M ′ ∈ D such that M ′ 6= M and H(M ′) = H(M).
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Apart from these basic properties several other security properties such as herding at-

tack [2, 4] and trojan message attack [4] are defined in the literature. All these properties

will be formally defined in a later chapter.

1.1.2 Models of Attack

The attacks on cryptographic hash functions can be broadly divided into two categories:

(a) Specific attacks, i.e., attacks that exploit some specific weakness in the building

blocks of the hash function such as weaknesses in the underlying compression func-

tion, or use some specific tools, such as meet-in-the-middle or differential attack.

(b) Generic attacks, i.e., attacks that do not exploit the above mentioned weaknesses,

and consider only the flaws in the general design.

1.1.2.1 Specific Attack Models

These attacks exploit certain weaknesses in the particular construction or use certain

cryptographic tools applicable on the construction to break the security. Some examples

of such attacks are MD4 [15], MD5 [16, 17], SHA-0 [18], SHA-1 [19, 20] and Streebog [21,

22]. Since, these attack models can vary based on the construction we are listing here

three basic techniques.

• Meet-in-the-Middle Attack: This attack utilises the invertibility property of hash

function to create a birthday attack on two lists. One of the list is constructed

using forward hash queries and the other is constructed using backward queries.

This enables the adversary to create a message for a given hash value. For further

details, please refer [23].

• Fixed Point Property: A function f is said to have fixed point property if f(h,m) =

h. Dean [24] used this property to construct a second preimage attack on iterated

hash functions.

• Differential Attacks: Differential Cryptanalysis [25] is based on the relation be-

tween input and output differences. In this attack the adversary searches for input

differences that are likely to cause a certain output difference.
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1.1.2.2 Generic Attack Models

Generic attack models do not use the internal structure of a particular hash function to

construct attacks. In these attacks, the hash function is considered as a black box or

oracle and the complexity is analysed in terms of the number of calls made to the oracle.

The black box or oracle output in these attacks are assumed to be following uniform

distribution, i.e., each of the hash output has same number of preimages. For a hash

function H from D to R consider the following attacks,

• Random Attack: If the hash function in consideration follows a uniform distribu-

tion, the probability that some random domain point maps to a given range point

is 1/|R|. The adversary has to choose atleast |R| many random domain points

to get a preimage of the given range point. So, a generic attack on preimage and

second preimage security of a hash function should follow this bound.

• Birthday Attack: This attack is widely used for finding collisions in generic attacks.

The basic idea behind this attack follows from the so called “Birthday Paradox”

which says that if a room has at least 23 randomly sampled people, then the

probability that two of them share the same birthday is at least 1/2. Analogously

in the hash function setting, one needs to compute
√
|R| random domain points

to get a pair of domain points with same hash value.

In this thesis, we will be focusing on the generic attacks and attack structures used for

different hash function designs.

1.2 Applications of Hash Functions

Famous cryptographer Schneier has rightly called hash functions “the workhorses” [26]

of modern cryptography. Hash functions have applications in almost all the information

security verticals. We are listing few of them to highlight the importance of having

secure hash function definitions.

1. Digital Signatures and the need for Domain Extension: Diffie and Hellman

first recognised [6] the need for a one way hash function as a building block of digital

signatures. Signature schemes are generally defined over fixed length messages

which makes it difficult to sign a message of arbitrary length. Hash functions

can be handy in this situation where the message is first hashed to a fixed length

digest and the signature algorithm is then applied to this hash digest to obtain the

final signature output. This paradigm is commonly known as “Hash-then-Sign”.
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However, now the security of the overall signature scheme will depend upon the

collision resistance of the underlying hash functions. A collision pair for the hash

function will give same signature there by enabling forgery of signature scheme.

2. Authentication Schemes: In [6] Diffie and Hellman commented,

Not only must a meddler be prevented from injecting totally new, authentic messages into a chan-

nel, but he must be prevented from creating apparently authentic messages by combining, or merely

repeating, old messages which he has copied in the past. A cryptographic system intended to guar-

antee privacy will not, in general, prevent this latter form of mischief.

This introduced the notion of authentication in cryptographic protocol which up

until then was considered as a subproblem of data privacy. Hash functions (gen-

erally keyed) play a very important role in the design of message authentication

codes or MACs. If the hash function in use is one way (preimage resistant) and

collision resistant then it is hard for an adversary to create new or modify earlier

authentication tags.

3. Commitment Schemes: A commitment scheme works in two phases, commit

phase and the reveal phase. In commit phase, first party commits to a value while

keeping it hidden from the second party and in reveal phase, the first party has

to reveal the committed value. The commitment scheme has the following basic

cryptographic requirements:

(a) First party should be unable to change the committed value, once committed

in the commit phase.

(b) Second party should be unable to gain any information about the committed

value before the reveal phase.

Commitment scheme is a very important cryptographic protocol useful in biddings

and future contracts. Hash functions can be easily used to construct commitment

schemes. Suppose the first party has to commit M . A commitment to M is

H(M), where H is a secure hash function. Now, if H is preimage resistant then

the second party will not gain any information about M from H(M). Similarly,

if H is collision resistant then the first party cannot change the committed value

because that will imply that he has a valid collision pair.

4. Data Integrity: Hash functions have also been used for preserving data integrity,

i.e., it helps in maintaining and assuring the consistency and accuracy of data. For

example MD5, SHA-1 or SHA-2 hashes are sometimes posted along with the data

on websites to allow verification of integrity [27]. If the hash function behaves as

random oracle, then any inconsistencies or inaccuracies in the downloaded data

will be reflected by the incorrect hash value.
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1.3 Related Works and Motivation for this Work

Generally, a hash function is supposed to take variable length input, i.e., the hash

function should be able to map variable length strings to a fixed length output string.

Construction of such a function from scratch is very difficult. To overcome this difficulty

a function of fixed input size (known as compression function) is used as per a set

of rules (known as combining rules or hash designs) to extend the input size to any

arbitrary length. Yet another use of combining rules is to increase the security of the

hash function (at least, this is what the designer aims). Essentially, a hash function is

a combination of one or more well defined compression functions and a combining rule.

Some examples of compression function schemes are Davies-Meyer [28], Matyas-Meyer-

Oseas [29] and Miyaguchi-Preneel [30]. Some examples of combining rules are Merkle-

Damg̊ard construction [31, 32], Concatenated Hash [4, 33], Hash Twice [4], HAIFA [34],

Sponge [35] and Zipper Hash [4, 36]. Most of them use iterations of a compression

function and hence are grouped as iterated hash and its variants.

In this thesis we survey some of the cryptanalytic results on popular iterated hash

variants such as Hash Twice, Concatenated Hash and Zipper Hash. We will analyse

the security of these constructions in the presence of various weaknesses and provide

new techniques to attack these constructions. Our main focus will be the analysis of

preimage, second preimage and herding resistance of these constructions.

The cryptanalytic study of iterated hash and its variant got a major boost with the

seminal work [37] of Joux in which he found a very efficient way of finding multicollisions

on iterated hash constructions. Kelsey and Schneier then expanded this idea to construct

second preimages for long messages. Kelsey and Kohno proposed the CTFP attack [2]

on Merkle-Damg̊ard (or MD) constructions using a new data structure called diamond

structure. This was later studied in more detail by Upadhyay in his thesis [38]. The

diamond structure was also found to be suitable for other attacks [4, 38–40] where the

known methods have failed. Another data structure called Kite was proposed in [38, 40]

to construct an attack on dithered hash and hash twice. These works opened new avenues

for research in hash function constructions. Since the vulnerability of simple iterated

hash construction was evident due to various attacks, efforts were made to somehow

amplify the security. Liskov proposed a construction [36] called Zipper Hash that makes

two passes on the input message where the second pass uses the block-wise reverse of

message. Hoch and Shamir [41] proposed a XOR construction and showed its robustness

in collision property. Several other constructions [42, 43] were proposed that amplifies

the security of the underlying compression functions.
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Andreeva et al. [4] analysed the CTFP, second preimage and trojan message resistance of

some MD variants like Concatenated Hash, Hash Twice and Zipper Hash. They showed

that both concatenated hash and hash twice are susceptible to herding attacks and that

the hash twice construction does not provide full second preimage resistance. In case of

zipper hash they argued that conventional herding attack is as hard as finding a preimage

and gave a modified herding attack for it. Recently, Leurent et al. [3] gave a surprising

results for XOR combiner. They showed that the XOR combiner is weaker than the

constituent hash functions in preimage resistance. They also proposed an innovative

data structure called the switch and interchange structure. Chen et al. [5] gave a 2n/2

second preimage attack on zipper hash with invertible compression functions.

The (second) preimage security of concatenated hash and zipper hash has for long been

an open problem. Recent results have raised a valid doubt that these constructions

may not be fully secure. Also, it will be interesting to analyse the security of these

constructions in the presence of weaker compression functions. In this thesis, we will

try to solve these problems. We will mainly deal with the zipper and concatenated hash

functions. We aim to analyse the (second) preimage and herding attack resistance of

zipper hash in random oracle model. For this we will introduce a new data structure

called Rho. We will also analyse the (second) preimage resistance of concatenated hash

with weaker compression functions. Apart from these, we will also introduce three

new data structures, chain structure, multi-pipe expandable message set, and the rho

structure. We will show a surprising application of chain structure in improving the

complexity of herding attack on iterated hash.

1.4 Organisation of Thesis

The thesis has been organised in following chapters,

1. Chapter 2, covers the basics of hash functions and their security definitions. It

also introduces the notations that we will be using throughout this thesis. We will

also give some necessary definitions and results in graph theory and probability.

2. In chapter 3, we survey some popular variants of iterated hash function. We will

also review the PGV compression function family.

3. In chapter 4, we briefly discuss various known data structures and techniques used

for constructing attacks on hash functions. We will also summarise the known

attacks on iterated hash variants like hash twice and concatenated hash.
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4. In chapter 5, we will introduce two new structures, a chain structure and a multi-

pipe expandable message set. We will also present our analysis of concatenated

hash function in the presence of weak compression functions.

5. In chapter 6, we will present our analysis on zipper hash function. We will also

introduce the new data structure Rho used in the analysis.

6. Chapter 7, concludes the thesis and gives a brief discussion on future course of

research.



Chapter 2

Preliminaries

In this chapter, we will establish our notations, and formally define a hash function and

its security goals. We will also mention some fundamental results in probability and

graph theory, that will be useful in the later parts of this thesis.

2.1 Mathematical Background

2.1.1 Notations and Notes

We will denote the set of all integers by Z, and the set of all natural numbers by N. For

any n ∈ N, {0, 1}n represents the set of all n-bit binary strings. {0, 1}+ denotes the set

of all binary strings of length > 0, and {0, 1}∗ denotes {0, 1}+ ∪{φ}, where φ represents

the empty string. For any x ∈ {0, 1}n, |x| denotes the length (in no. of blocks) of x, and

〈x〉k denotes the k-bit binary representation of |x|. For x, y ∈ {0, 1}n, x‖y represents

the concatenation of x and y. We denote the padded version of a message m ∈ {0, 1}∗

by m := (m1,m2, · · · ,ml), where mi denotes the individual message block for 1 ≤ i ≤ `.

If X is a finite set, then x
$←− X denotes the uniform random sampling of x from X .

We will write lg n for the logarithm of n to the base 2 and lnn for the natural log of n.

Note 1. For x � 1, ex ≈ 1 + x. This can be easily deduced, using the first order

approximation of ex, in the Taylor series expansion of the exponential function.

Note 2. For x� 1, (1 + x)n ≈ 1 + nx. This can be easily deduced, using the binomial

expansion of (1 + x)n, and ignoring the higher degree terms in x (as x� 1).

9
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2.1.2 Asymptotic Complexity

Most of the theoretical analysis of algorithms consider the asymptotic complexity of

a particular algorithm. We will be using the following asymptotic notations in our

complexity analysis:

1. f(x) = O(g(x)), iff there exists a constant c > 0 and a real number x0, such that

|f(x)| ≤ c|g(x)| for all x > x0. This is generally used to give an idea of the upper

bound.

2. f(x) = Ω(g(x)), iff there exists a constant c > 0 and a real number x0, such that

|f(x)| ≥ c|g(x)| for all x > x0. This is generally used to give an idea of the lower

bound.

3. f(x) = Θ(g(x)), iff there exist constants c1, c2 > 0 and a real number x0, such that

c1|g(x)| ≤ |f(x)| ≤ c2|g(x)| for all x > x0. This signifies that the function f (com-

plexity function) grows in a similar fashion as g, and thus it can be approximated

by g.

2.1.3 Probabilistic Results

Lemma 2.1. From a set of N distinct elements q elements are randomly drawn with

replacement. The probability p, that some of them will be equal to a given value x is,

1− (1− 1
N )q

Proof. Consider the probability of the complement event, i.e., the probability that none

of the q elements is equal to x is,

(1− 1
N )q

The result follows.

Remark 2.2. For n� q, p ≈ 1− e−
q
N (using Note 1). Therefore, for p ≥ 1

2 we require a

sample size, q = O(N).

Lemma 2.3. From a set of N distinct elements q elements are randomly drawn with

replacement. The probability p, that at least two of the drawn elements are equal is,

1− (1 · (1− 1
N ) · (1− 2

N ) · · · (1− q−1
N ))
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Proof. The probability that all q elements of the sample are distinct is,

(1 · (1− 1
N ) · (1− 2

N ) · · · (1− q−1
N ))

The result follows.

Remark 2.4. For N = 365 and q = 23, p ≈ 1
2 . This is the famous birthday problem or

birthday paradox.

Remark 2.5. For N � q,

p = 1− (1 · (1− 1
N ) · (1− 2

N ) · · · (1− q−1
N )) ≈ 1− (e−

1
N e−

2
N · · · e−

q−1
N ) = 1− e−

q(q−1)
2N

Therefore, for p ≥ 1
2 we require a sample size, q = O(

√
N).

Lemma 2.6. Let P and R be two randomly chosen subsets of set S, such that |P | = q1,

|R| = q2, |S| = N and q1 + q2 < N . Then the probability p, that P ∩ R 6= φ is greater

than,

1− (1− 1
N )q1q2

Proof. The probability that P ∩R = φ is,

(Nq1)(
N−q1
q2

)

(Nq1)(
N
q2

)
=

(N−q1q2
)

(Nq2)
= (N−q1)!

(N−q1−q2)!
(N−q2)!
N !

= (1− q1
N )(1− q1

N−1) · · · (1− q1
N−q2+1) < (1− q1

N )q2 < (1− 1
N )q1q2

The result follows.

Remark 2.7. For N � 1, the above probability p ≈ (1− e
q1q2
N ). Therefore, for p ≥ 1

2 we

require q1q2 = O(N).

Remark 2.8. The above lemma can be generalized to k sets of size q1, q2, · · · , qk such

that q1 + q2 + · · ·+ qk < N . In this case, for p ≥ 1
2 we require q1q2 · · · qk = O(N). This

is called generalised birthday problem.

2.1.4 Graph Theoretic Definitions

Definition 2.9. Directed Graph: A directed graph or “digraph” G, is a 2-tuple (V,E)

consisting of,

• Set of vertices V in G.
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• Set of arcs E ⊆ V × V , such that an ordered pair (u, v) ∈ E represents a directed

arc from u to v in G.

A digraph G
′

: (V
′
, E
′
), is called the sub-graph of G, if V

′ ⊆ V and E
′ ⊆ E.

Definition 2.10. Walk: For a digraph G : (V,E), a walk is defined as a sequence of

vertices connected by arcs corresponding to the order of the vertices in the sequence.

A walk is considered closed, if the starting vertex is the same as the ending vertex, and

open otherwise. A walk with no repeated vertices, is called a path. A closed walk where

no other vertices are repeated, apart from the start vertex, is called a cycle. A closed

walk with no repeated arcs, is called a circuit.

Definition 2.11. Directed Arc-Labeled Graph: A directed arc-labeled graph G is

a 3-tuple (V,L,E) consisting of,

• Set of vertices V in G.

• Set of arc labels L.

• Set of arcs E ⊆ V × V × L, such that an ordered pair (u, v, `) ∈ E represents a

directed arc from u to v with label ` in G.

2.2 Basics of Hash Function

Definition 2.12. Hash Function: An n-bit hash function H can be defined as,

H :M→H,

where M and H are called the message space and digest space, respectively.

Generally, H is a finite set, and M is either infinite or |M| � |H|. The strings over an

arbitrary finite alphabet can be encoded into strings over a binary alphabet. So, without

loss of generality, we can assume that all our messages and digest values are over the

binary alphabet {0, 1}. From now on, we will assume that the message space is {0, 1}∗,
and the digest space is {0, 1}n.
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2.2.1 Random Oracle Model

The random oracle model represents the idea of an “ideal” hash function. In this model,

the adversary is given only oracle access to the hash function, that is, the hash function

is like a black box. This means the adversary does not has an access to the actual

implementation of the hash function. The only way to compute the hash value is to

query the oracle interface. An important property of the random oracle is that, if the

adversary queries the same value multiple times, it gets the same output each time. A

secure hash function is expected to offer the same level of resistance as offered by the

random oracle.

In some cases, the adversary is given access to some additional interfaces, to formu-

late the model of weakness in hash designs. In this thesis, we will consider following

additional interfaces:

1. Fixed point interface, which on input y, returns a random value x, such that

f(x, y) = x.

2. Weakly invertible interface, which on input z, returns a random pair (x, y), such

that f(x, y) = z.

3. Strongly invertible interface, which on input (y, z), returns a random value

x, such that f(x, y) = z. This is referred as Backward interface [3]. Another

variant returns y, on input (x, z), such that f(x, y) = z. This is referred as

Bridging interface [3].

Observe that the strongly invertible interface gives more control to the adversary, as

compared to a weakly invertible interface. The adversary gets to fix her choice of x or y.

In other words, a strongly invertible interface can work as a weakly invertible interface,

and hence it is a stronger notion of weakness.

2.2.2 Security Notions for Hash Function

There are several popular security notions for hash functions in literature. The most

basic being collision resistance, preimage resistance and second preimage resistance. Ro-

gaway et al. have coined seven different variants of these basic properties for a keyed hash

function (see [44] for more details). Since, we are focussing on unkeyed hash functions,

we are enumerating the three basic properties along with two additional properties,

namely herding and trojan message resistance. For a hash function H consider,
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1. Collision Resistance: H is said to be collision resistant, if it is hard for all

efficient adversaries to find a (M,M
′
) message pair, such that H(M) = H(M

′
).

2. Preimage Resistance: H is said to be preimage resistant if given a hash value

h, it is hard for all efficient adversaries to find a message M , such that H(M) = h.

3. Second preimage Resistance: H is said to be second preimage resistant if given

a message M , it is hard for all efficient adversaries to find a message M
′ 6= M ,

such that H(M
′
) = H(M).

4. Chosen-Target Forced-Prefix (CTFP) or Herding Resistance: In [2] Kelsey

and Kohno proposed a security game that can be described as follows:

(a) In the first phase, adversary A commits a hash value h. The hash value h is

called chosen target.

(b) In the second phase, the challenger C selects a prefix P and gives it to A.

The prefix P is called forced prefix.

(c) In the third phase, A has to produce a suffix S, such that H(P ||S) = h.

A similar game (CTFS) can be constructed with forced suffix also. This notion

has been employed in [4] to construct herding attack on the zipper hash. A hash

function is said to be herding resistant, if it is hard for all efficient adversaries to

produce suitable suffix(prefix) in CTFP(CTFS).

5. Trojan-Message Resistance: Trojan-message attack is a security game pro-

posed by Andreeva et al. in [4]. For an adversary A, it can be described as follows:

(a) In the first phase, based on a constrained set of prefixes P, the adversary A
commits a string S, called the trojan message.

(b) In the second phase, the challenger C selects a prefix P from P. The challenger

gives P ||S to A.

(c) In the third phase, A has to produce a second preimage T for P ||S.

A hash function is said to be trojan message resistant, if it is hard for all efficient

adversaries to produce a suitable second preimage in the above security game.

2.2.3 Iterated Hash

A hash function is generally required to work for any arbitrary length input. Further, it

is widely used as an input preprocessor in online fashion. To fulfil these requirements, a

fixed length input function is used on the input (part of it at a time), according to a set of

combining rules. The most popular of them is the iterated hash, in which the message is
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read in from left to right, block-by-block and the hash value of previous iteration is used

along with the current block, to produce the next hash value. A compression function

is at the core of the iterated hash design.

h0 h1 h2 hl−1 hl

Message

Padding

m1 m2 . . . . . . . . . . . . . . . . . . ml

f f fiv h

Figure 2.1: Construction of f+ by iterated use of f function.

Definition 2.13. Compression Function: A compression function f of block size n′

and length n, can be defined as,

f : {0, 1}n × {0, 1}n′ → {0, 1}n

where n′, n ∈ N and n′ > n.

Note that, n′ > n has been chosen for simplicity, and it is not a necessary property for

the analysis presented in this thesis. The adversary can simply increase the number of

blocks, to make the overall size greater than n. Unless otherwise stated, lower-case letters

f, g and their variants such as f
′
, fi where i ∈ N, will denote compression functions.

Definition 2.14. Iterated Hash Function: Using the compression function f in

definition 2.13, and an n-bit constant iv, we can define the iterated hash function f+ as

follows,

f+(iv; m1,m2, . . . ,m`) = h` := f(· · · f(f(iv,m1),m2) · · · ).

We can also write hi = f(hi−1,mi) where h0 = iv, 1 ≤ i ≤ `.

Iterated hash functions have a very nice representation using directed arc-labeled graphs.

A directed arc-labeled graph G corresponding to a compression function f has the set

of vertices V = {0, 1}n, the set of labels L = {0, 1}n′ and whenever f(u,m) = v we

have a label m for the arc (u, v). We write u
m−→ v. Thus, the sub-graph in figure 2.2

represents the computation of the iterated function f+.

We refer to such graphs as structures, and paths in such structures will be referred

as chains. Note that we may have hi = hj and so the above structure is a walk and
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not necessarily a path (chain). The hash values on these structures will be referred as

chaining values.

h0
h1 h2 h3 ht−3 ht−2 ht−1

ht
m1 m2 m3 mt−2 mt−1 mt

Figure 2.2: Graphical representation of iterated hash.

In this thesis, we also discuss attacks on some variants of the iterated hash. These

designs may be two-pass, i.e., they may use the message blocks twice (in some order)

and the underlying compression function for each pass may be different. We differentiate

between the computations on different compression functions, by using thick edges for

the second pass compression function, and denote the junction point between the two

passes by an unfilled node (i.e. ◦).

In practice, messages may not have length that is divisible by n′. So, it is necessary to do

some preprocessing for length correction. This is called padding, which generally employs

an injective function P , such that for an arbitrary message M , |P (M)| is divisible by

n′. Two popular padding rules are,

1. Pozp, defined as Pozp(M) = M‖10d, and

2. PsMD, defined as PsMD(M) = M‖〈M〉64‖10d,

where d is the smallest non-negative integer for which length of the padded message is

divisible by n′.

With P = PsMD, the composition f+ ◦ P is called the MD hash function, proposed

independently by Merkle [31] and Damg̊ard [32]. The MD hash function is collision

resistant, if the underlying compression function is collision resistant [31, 32].

2.2.4 Attack Algorithms and their Complexity

In this thesis, we are considering generic attack algorithms on hash designs. We will

assume that the adversary knows the hash design, but the underlying compression func-

tion is like a black box for the adversary. In other words, the adversary knows the

combining rule to use while working with a compression function f , but the concrete

definition of f is not known to the adversary. This setting is called the random oracle

model (refer 2.2.1). In certain cases, we will consider some weaker notions of random

oracle model, where some additional interfaces will be available to the adversary. But,

even in these settings the actual definition of f will not be known to the adversary.
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Most of the attacks discussed in this thesis can be analysed by analysing the underlying

structures, techniques and the relationship between them. For example, suppose an

attack uses internally the Joux multicollision (complexity O(2n/2)), then it is inferred

that it requires at least O(2n/2) computations. We will be using similar analysis, and

moreover we will focus on the structural elaboration of the attack algorithms.

All the attacks discussed in this thesis are constructed as (a sequence of) distinct statisti-

cal experiments. The (sequence of) experiment(s) is modelled as independent Bernoulli

trials, which is repeated until the required event W happens. Suppose the probability

of the event W is p and let X be the number of repetitions needed. Then X is a ran-

dom variable that follows the geometric distribution, and the expected value E(X) of

X satisfies E(X) = 1
p .

From the discussion in the preceding paragraph and the fact that f is a random oracle,

it is clear that the adversary cannot perform successful preimage attack in any other

way than through random search. The same is expected for second preimage attacks

against messages with just a single message block. Using remark 2.2, we can conlcude

that finding a preimage or second preimgae should take O(2n) oracle queries. Similar

argument can be given to say that if f is modelled as random oracle, then the hash

function will be collision resistant upto birthday bound, i.e., O(2n/2) oracle queries

(refer remark 2.5). So, any hash function that claims to be secure in the random oracle

model should offer similar query bounds. Note that these bounds can be significantly

lowered by considering specific implementations of hash function and their underlying

compression functions. This is evident from the attacks by Wang et al. [15, 16, 18, 20],

Biham et al. [19], Klima [17] and Joux et al. [45] on hash functions based on the MD4

design, such as MD5, RIPEMD, SHA-0 and SHA-1.

2.2.4.1 On Computational Complexity

In the random oracle model, the adversary can only make compression function calls to

compute hash values (or compute preimage for hash value in the weaker model). So,

it seems reasonable to consider the expected number of compression function calls as a

measure for efficiency of an attack algorithm. Indeed, this has been the case with most

of the works on generic attack[1, 2, 37]. We will follow a similar approach in this thesis.

For example, if a compression function outputs n bits, then we will state that it has

O(2n/2) collision security and O(2n) preimage and second preimage security.

Suppose the adversary is constructing collision attack on the above function, then it will

require t · 2n/2 expected no. of oracle calls, where t = O(nk), k ∈ N. We can ignore the
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factor t for sufficiently large values of n. In other words, we will ignore the logarithmic

and polynomial factors whenever appropriate.

2.2.4.2 On Memory Complexity

Memory is another constraint for an attack algorithm. Suppose the adversary is con-

structing a collision attack, where she is supposed to store 2n/2 hash values for a com-

putational complexity of O(2n/2). But, if the required memory is not available, then the

computational cost will increase. So, the adversary has to find an equilibrium between

space and time. This is called time-memory trade-off.

In hash function analysis, many attack algorithms work in two phases, an offline phase

and an online phase. In the offline phase, the adversary generally precomputes certain

structures, which can reduce the computational complexity in the online phase. This

increases the memory complexity as the adversary has to store these structures for

online use. The general principle is to make offline phase of higher computational cost

to decrease the online cost.

We will consider two parameters while analysing the memory complexity of an algorithm.

First, the online storage of intermediate hash values and message blocks, and second,

the size of offline created structures.

2.2.4.3 On Message Complexity

In this thesis, we will also analyse the number of random message blocks sampled for

constructing an attack. In most of the cases it closely resembles the computational

complexity. But, for certain attacks and structures, it reveals a very peculiar property;

the adversary’s control over the message content is inversely proportional to the number

of random message blocks sampled. We will term this analysis as the message complexity

of an attack algorithm.
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Iterated Hash Variants and PGV

Function Family

In this chapter, we will survey the variants of iterated hash such as concatenated hash,

hash twice, XOR combiner and the zipper hash. Though these designs have many

improvements over the iterated hash designs, yet they inherit many cryptanalytic flaws

from iterated hash. We will also review the PGV compression function family based

on block ciphers. These schemes are very popular and many concrete hash function

definitions such as MD5, SHA-1 etc. are based on these functions.

3.1 Iterated Hash Variants

In order to improve over the security offered by iterated hash many variants were pro-

posed. These efforts were generally concentrated in two directions. First, combining

two or more independent hash functions into one hash function. The aim was to am-

plify the security of the combined hash function by using the security of its constituent

hash functions. Combiners like concatenated hash and XOR combiner fall under this

category. Second, multiple passes over the message blocks. The aim was to increase the

dependency of hash output on the given message blocks. Hash functions in this category

are practically inefficient due to their multi-pass nature. Designs like the zipper hash

and hash twice fall under this category.

3.1.1 Concatenated Hash

Concatenated hash function uses two independent hash functions H and G internally.

The message M is hashed on each of the hash functions, and outputs are concatenated

19
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to produce the output of the concatenated hash function (see figure 3.1), i.e, formally

for hash functions H and G, the concatenated hash CHG is defined as,

∀m ∈ {0, 1}∗, CHG(m) := H(m)||G(m)

Ideally, the hash function CHG should provide 2n collision resistance and 22n preimage

resistance. But, Joux [37] showed that if one of the component hash functions is based

on MD hash function, then the collision and preimage security reduces to 2n/2 and 2n

respectively. In particular, the concatenated hash does not amplifies the security. But

it is a robust construction, i.e., it offers at least same level of security as offered by

its constituent hash functions. Later, Hoch et al. [41] analysed the security of concate-

nated hash with weak compression functions and proved that it offers n
2 -bits security

for collision and preimage resistance. In this thesis we will show that even if one of the

compression function is weak, then a second preimage can be computed in less than 2n

computations.

h0 h1 h2 hl−1 hl

m1 m2 ml

f f fiv H(m)

g0 g1 g2 gl−1 gl

m1 m2 ml

g g giv′ G(m)

Figure 3.1: Schematic of Concatenated Hash CHG.

3.1.2 XOR Combiner

The XOR combiner is similar to the concatenated hash in its use of two independent

hash functions H and G. But instead of concatenating H(·) and G(·) outputs it XOR

them, i.e, formally for hash functions H and G, the XOR combiner XHG is defined as,

∀m ∈ {0, 1}∗, XHG(m) := H(m)⊕G(m)

Recently, Laurent et al. [3] have shown that the XOR combiner is not robust in preimage

resistance, i.e., it offers less than 2n preimage security.



Chapter 3. Iterated Hash Variants and PGV Function Family 21

h0 h1 h2 hl−1 hl

m1 m2 ml

f f fiv H(m)

g0 g1 g2 gl−1 gl

m1 m2 ml

g g giv′ G(m)

XHG(m)

Figure 3.2: Schematic of XOR Combiner XHG.

3.1.3 Zipper Hash

At SAC 2006, Liskov proposed the zipper hash [36] and argued that it is indistinguish-

able [46, 47] with random oracle even when the underlying compression functions have

some weaknesses. Conceptually, the zipper hash [36] is a two-pass hash function which

uses a padded message m in the first pass and its block-wise reverse in the second

pass. Formally, an n-bit zipper hash function Z based on two independent compression

functions f1 and f2 (and a fixed initial value iv) can be defined as

Z(m) := f+
2 (f+

1 (iv;m);mrev)

where m = (m1, . . . ,m`) and mrev = (m`, . . . ,m1) is the block-wise reverse of m.

f1 f1 f1

f2f2f2

m1 m2 ml

iv
h1 hl−1

h2l−2h2l−1 hl
Z(m)

Figure 3.3: Schematic of Zipper Hash Z.

Though zipper hash was originally defined to create secure hash functions from weak

compression functions, however further study [48] showed that assumed weaknesses in

compression functions create fatal flaws in the design. We will consider the zipper hash

in many different settings, such as f1, f2 are random oracles, f1, f2 have some form of

weakness (see chapter 2), and f1 = f2. The zipper hash with f1 = f2 will be referred

as the relaxed zipper hash. Zipper hash is practically inefficient due to its two pass

nature. But, theoretically it has been an intriguing design as it has resisted several
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known attacks [1, 2, 39, 40]. The first significant attack on the zipper hash is given by

Andreeva et al. [4], which is concerned with the herding attack. Recently, Chen et al. [5]

have shown a second preimage attack for zipper hash with weak compression functions.

3.1.4 Hash Twice

The hash twice construction is a multi-pass scheme similar to the zipper hash. Here, two

consecutive copies of the message are hashed one after another (see figure 3.4). Formally,

an n-bit hash twice function T based on two independent compression function f1 and

f2 is defined as,

T := f+
2 (f+

1 (iv;m);m)

Hash twice is practically insignificant due to its multi-pass over message blocks. And

as it turns out, the hash twice design only marginally increases the security of a plain

iterated hash construction. Andreeva et al. [4] have proposed second preimage and

herding attacks on hash twice, which show that this design is not secure.

h0 h1 h2 hl−1 hl hl+1 h2l−1 h2l

m1 m2 ml m1 ml

f f f f fiv T (m)

Figure 3.4: Schematic of Hash Twice T .

3.2 PGV Compression Functions

Preneel, Govaerts, and Vandewalle [49] considered 64 most basic ways to construct

a compression function from a block cipher E : {0, 1}n × {0, 1}n −→ {0, 1}n. They

regarded 12 of these 64 schemes as secure and the remaining 52 schemes were shown to

be vulnerable to various attacks (see [49] for more information). Black, Rogaway and

Shrimpton [50] gave more formal treatment and security proofs to these basic schemes.

They categorised the 64 schemes into three groups,

1. Group 1 : They grouped 12 constructions in the first group. The schemes in this

group were found to be both collision and preimage resistant.

2. Group 2 : They grouped another 8 constructions in the second group. The schemes

in this group provide the same level of collision security as in group 1. But, their

preimage resistance is lower than the group 1 schemes.
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3. Group 3 : The remaining 44 constructions were found to be neither collision nor

preimage resistant. These were grouped in the third group.

So, effectively only the first two groups are useful for hash function constructions. Some

of the popular block cipher based constructions that belong to the PGV groups are

described in the following subsections.

3.2.1 Davies-Meyer

The Davies-Meyer compression function uses each block of the message (mi) as the

key to a block cipher. It feeds the previous chaining value (hi−1) as the plaintext

to be encrypted. The output ciphertext is then XORed with the previous chaining

value (hi−1) to produce the next chaining value (hi). Formally, if E represents a block

cipher then, the Davies-Meyer compression function can be described by the relation,

hi = Emi(hi−1)⊕ hi−1.

∨

mi

hi−1 hi

Figure 3.5: Schematic of Davies-Meyer construction.

The Davies-Meyer function is a group 1 PGV scheme (f5 in [50]). This scheme has

been employed in the SHA-1 hash function. A notable property of the Davies-Meyer

construction is that it is possible to compute fixed points for this function, i.e., for any

m, one can find a value of h such that Em(h)⊕ h = h (by setting h = E−1
m (0)).

3.2.2 Matyas-Meyer-Oseas

The Matyas-Meyer-Oseas (MMO) compression function can be considered as a dual

of the Davies-Meyer function with respect to its treatment of message block and the

previous chaining value. It uses the previous chaining value hi−1 as the key and feeds

the message block as the plaintext to be encrypted. The output ciphertext is then

XORed with the message block to produce the next chaining value.

∨

hi−1

mi hi

Figure 3.6: Schematic of Matyas-Meyer-Oseas construction.



Chapter 3. Iterated Hash Variants and PGV Function Family 24

Formally, the MMO compression function can be described by the relation, hi = Ehi−1
(mi)⊕

mi. Similar to Davies-Meyer, the MMO function is a group 1 PGV scheme (f1 in [50]).

But, unlike Davies-Meyer, fixed point computation is not easy for this scheme.

3.2.3 Miyaguchi-Preneel

The Miyaguchi-Preneel compression function can be viewed as an extension of MMO

function. In this scheme, the output ciphertext is XORed with both the message block

and the previous chaining value. Formally, the Miyaguchi-Preneel compression function

can be described by the relation, hi = Ehi−1
(mi)⊕mi ⊕ hi−1.

∨

hi−1

mi hi

Figure 3.7: Schematic of Miyaguchi-Preneel construction.

This is a group 1 PGV scheme (f3 in [50]) and offers similar security as offered by MMO.

This scheme is used in the Whirlpool [51] hash function.

3.2.4 Notable Weaknesses in Some PGV functions

Among the 64 PGV schemes, only 20 schemes were found to be collision resistant

(see [50] for details). Further, 8 of these schemes (group 2) have lower preimage re-

sistance (O(2n/2)). We will briefly discuss various security gaps that an adversary can

exploit in the 20 collision resistant PGV hash schemes.

1. Weakly invertible compression functions: Four of the eight group 2 PGV schemes

(f13, f14, f16, f18) are weakly invertible compression function, i.e., adversary has

the power to compute random preimage values for these schemes.

2. Strongly invertible compression functions: Four of the eight group 2 PGV schemes

(f15, f17, f19, f20) have this weakness (see [50] for structural information).

3. Fixed point weakness: Four of the twelve group 1 PGV schemes have fixed point

weakness property. Further, for two group 1 PGV schemes (f10 and f11) ran-

dom fixed points can be easily computed. Surprisingly, none of the group 2 PGV

schemes have fixed point weakness.



Chapter 4

Existing Structures, Techniques

And Attacks

In this chapter, we will review some of the existing structures and techniques for con-

structing attacks on the iterated hash and its variant designs. We will also review some

of the known attacks on hash twice, concatenated hash and zipper hash.

4.1 Techniques

Here we are reviewing some of the attack techniques and strategies used in this thesis.

4.1.1 A Note on Collisions Between Lists

Given two lists L1 and L2 of size 2k and 2n−k respectively, with high probability we

can find a collision between these lists (see lemma 2.6 in chapter 2). Note that one

of the lists can be generated run-time while finding collision. This technique is called

hitting and is very useful in finding a linking string1 from a random chaining value to a

chain. Meet-in-the-middle is a special case of the two list collision in which, one of the

list is created by making forward queries and the other list by backward queries. This

technique is extensively used for constructing attacks or structures. We denote these

three techniques by algorithms LISTCOLL(L1, L2), MEET-IN-MIDf,g(h, h′) and HITTINGf (h, L).

1A string is a concatenation of one or more message blocks.
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4.1.2 A Note on Time-Memory Tradeoff Attacks

One-wayness of a function is the most fundamental problem in cryptography [52]. Hell-

man [53] first showed a preimage attack or in other words, broke the one-wayness of any

function H (i.e., given h, to find M such that H(M) = h). In his attack, the online

time T and memory M satisfy the relation TM2 = 22n. Consequently, the attack is

known as a time/memory trade-off (TMTO) algorithm. Note that in the TMTO set-

up, the precomputation time is not considered, since this is a one-time off-line activity

which can be performed at the cryptanalyst’s leisure. Several efforts have been made to

improve the time/memory trade-off curve [54–58]. However, most of the improvement

either assumes multiple targets or works for a specific structure of a one-way function,

e.g., stream ciphers [54, 57].

4.2 Structures

As stated in chapter 2, the iterated hash can be represented in terms of graphs or

structures. These structures form an important basis for constructing attacks on the

iterated hash schemes and its variants. Here we are reviewing some of the popular

structures.

4.2.1 Joux’s Multicollision

For an iterated hash based on the compression function f with n-bits output,

M = {Mi : 0 ≤ i ≤ r} is said to be an r-multicollision set, if ∀M,M
′ ∈ M and

M 6= M
′
, f+(h,M) = f+(h,M ′) for some hash value h ∈ {0, 1}n.

It was a common assertion that the complexity of finding an r-multicollision in a random

oracle is Θ(2n(r−1)/r). Nandi et al. [59] later observed that the true complexity is actually

Θ(r·2n(r−1)/r). At Crypto 2004, Joux presented a seminal idea [37] to find multicollisions

in an iterated hash function at a much lower computational complexity.

The basic idea of Joux’s attack (illustrated in figure 4.1) is to find lg r successive collisions

(by applying birthday attack) for the compression function, starting from a random hash

value h0. Suppose this process ends at hk, then we have total 2lg r = r paths from h0 to

hk (2 for each collision cycle), which gives us the required r-multicollision set. We will

denote this algorithm by COLLf (h0, k), which returns a 2k-multicollision set.



Chapter 4. Existing Structures, Techniques And Attacks 27

h0 hk

m1

m′1

m2

m′2

mk−1

m′k−1

mk

m′k

≡≡ h0 hk

k = lg r

Figure 4.1: Joux multicollision structure and its shorthand representation in R.H.S.

Complexity Analysis. Each of the lg r birthday attacks cost O(2n/2) computations,

therefore, total computational complexity is O(lg r ·2n/2). Note that, the algorithm does

not need to describe all r messages, as it can be simply described by only 2 lg r message

blocks. Hence the memory complexity is O(n lg r). The message complexity is O(2n/2)

as it requires sampling of O(2n/2) message blocks.

4.2.1.1 Application in Collision and Preimage Attacks on Concatenated

Hash

Joux [37] showed that if one of the constituent hash function of the concatenated hash

is following iterated hash design, then the collision and (second) preimage security of

concatenated hash can be reduced to 2n/2 and 2n from 2n and 22n respectively2.

Suppose H and G are the constituent hash functions and H is based on iterated hash.

In the collision attack, the adversary first finds a 2n/2-multicollision set in H and then

uses these 2n/2 messages to construct a birthday attack on G. This will give a collision

pair in both H and G. The preimage attack requires a 2n preimage set in H. This can

be constructed by first finding a 2n multicollision set and then linking the last hash value

with the target hash value. The 2n preimage set is then used to construct a random

attack on G. This will give a preimage in both H and G.

Complexity Analysis. The computational complexity for the collision attack is

O(n2 · 2
n/2) + O(2n/2) ≈ O(2n/2). Similarly, for the preimage attack it is O(n · 2n/2) +

O(2n) ≈ O(2n). The memory complexity for the collision and preimage attacks is O(n2).

The message complexity is O(2n/2) in both the attacks.

4.2.2 Kelsey-Schneier Expandable Message

For a n-bit hash function H,

2For simplicity, we have assumed that both the constituent hash functions have n-bits hash output.
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M = {Mi : 0 ≤ i ≤ 2k − 1} is said to be a (k, 2k − 1)-expandable message set if

M is a 2k-multicollision set and ∀` ∈ [k, 2k + k − 1], ∃M ∈ M such that number

of blocks in M is `.

Kelsey and Shneier extended Joux’s idea to get an expandable message set [1]. The

basic idea is to exponentially (in power of 2) increase the no. of blocks in the lower arc

of each iteration of a 2k-Joux multicollision structure (see figure 4.2). This gives a set

of 2k colliding messages with lengths ranging from k to 2k + k − 1 blocks. We denote

this algorithm as EXPMSGf (h0, k) which returns a [k , 2k + k− 1]-expandable message set.

h0 hk

m1

|m′1| = 2

m2

|m′2| = 3

mk

|m′k| = 2k−1 + 1

≡≡ h0 hk

k

Figure 4.2: Kelsey Schneier expandable message and its shorthand representation in
R.H.S.

Complexity Analysis. Computationally, the expandable message algorithm makes

2k more f computations then the regular Joux multicollision algorithm. Hence, the

computational complexity will be O(2k + k · 2n/2). Note that a single random message

block can be used to extend the arcs in the above algorithm. Hence, the memory

complexity is O(kn), as in Joux multicollision. The message complexity is O(2n/2).

4.2.2.1 Application in Long Message Second Preimage Attack

Dean [24], in his thesis showed that the fixed points of a compression function can be

used to construct a long message second preimage attack. But, this method was specific

to constructions with fixed point property. Kelsey and Schneier [1] used the expandable

message structure in place of the fixed point property to construct a long message second

preimage attack on the iterated hash. Suppose M is a 2l-blocks padded message and

ω denotes the walk generated during the hash computation of M . The basic idea is to

hit any of the intermediate chaining values on ω from a random walk (starting from

iv) ω
′
. This is done by trying 2n−l random single message blocks after the walk ω

′
.

By birthday attack, we can conclude that there will be a match with high probability.

Say the match happens for message block x and the matching is at hash value hi, then

messages from ω
′‖the random message block x‖message blocks on ω after hi gives the

required second preimage. This algorithm gives correct second preimage if there is no

length padding. But in case of length padding it may give incorrect results, as the length

|ω′ |+ 1 may not be equal to |ω1...i|. To counter this the random walk ω
′

is constructed
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using an expandable message set which helps in adjusting the number of blocks in ω
′

to

accommodate length padding.

iv
hi

ht

h

ω ′
x

Figure 4.3: Kelsey Schneier long message second preimage attack [1].

Complexity Analysis. The computational complexity of the above algorithm can

be analysed in three parts,

• First, note that the adversary has to compute the ω walk which will take O(2`)

computations.

• Second, to get a length comparable to 2` a [`, 2` + ` − 1]-expandable message set

will be required. This will take O(2` + ` · 2n/2) computations.

• Third, to hit the walk ω we need 2n−`+lg ` computations.

Therefore, total computational complexity will be O(2`+`·2n/2+2n−`+lg `). The message

complexity in this algorithm will be O(2n/2 + 2n−`+lg `) and the memory complexity will

be O(2`). So, we get an optimal attack for ` = n
2 .

4.2.3 Diamond Structure

A diamond structure [2] gives a different kind of multicollision set where each message

starts from a different chaining value. A 2k Diamond D (illustrated in figure 4.4) is a

complete binary tree with 2k leaf nodes, where each node represents a chaining value

and the directed arc (h, h′) with label m represents the transition f(h,m) = h′. The

set of leaves and the root node of D will be denoted by LD and hD, respectively. The

storage requirement for a 2k diamond structure is O(2k).
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Figure 4.4: A 2k converging diamond structure. A diverging diamond is similar with
the direction of arcs reversed.

Based on the direction of arcs, we can have two different types of diamond structure:

1. Converging Diamond [2], where the direction of arcs is from the leaves to the

root node. The computational complexity in building a 2k converging diamond

with forward queries is O(n ·
√
k · 2(n+k)/2) [38] and the message complexity is

O(2(n+k)/2). The detailed complexity analysis for this structure is a bit involved

and beyond the scope of this thesis. For further exposition, please see [38]. If

the computations are done on a strongly invertible function, then this structure

can be built in O(2k) backward queries and the message complexity will reduce

to O(2k). In this later case, this structure is also referred as inverse diamond [5].

We denote this algorithm as CONVDIAMf (H) for forward query construction and

CONVDIAMf−1 (h0, k) for backward query construction. In addition to the normal

inputs, the subroutine can also take a message set M as input.

2. Diverging Diamond, where the direction of arcs is from the root node to the leaves.

It takes O(2k) computations and O(1) message blocks to build this structure using

forward queries only. We denote this as subroutine DIVDIAMf (h, k,M) which returns

a 2k diverging diamond. DIVDIAM takes a chaining value h, a positive integer k and



Chapter 4. Existing Structures, Techniques And Attacks 31

a set of messages M as input. Note that, M can be null, in which case DIVDIAM

will use random messages.

hk hk

(a) (b)

2k 2k

Figure 4.5: Shorthand for (a) 2k-converging diamond, (b) 2k-diverging diamond.

4.2.3.1 Application in Herding Attack

Kelsey and Kohno used the converging diamond to define a CTFP or herding attack [2]

on the MD hash function. As illustrated in figure 4.6, the attack works as follows:

1. The adversary creates a 2k-diamond structure D and commits hD as target hash

value. The challenger gives a prefix P (chosen uniformly) to the adversary.

2. The adversary computes the walk ω, corresponding to the prefix P. From ω the

adversary tries to hit one of the chaining values in LD using 2n−k random single

message blocks.

3. There will be a match with high probability. Say the match happens for message

block x and the matching is at hash value hi, then x‖labels on the path from hi

to hD gives the required suffix S.

Note that for simplicity we have not considered the length padding here. It can be easily

incorporated in this attack by adding an expandable message set at the root of diamond.

iv ha

hb

hc

hD

hi

P
x

Figure 4.6: Herding attack on iterated hash using diamond structure [2].

Complexity analysis. This attack works in two phases. The computational com-

plexity of the precomputation phase is O(2(n+k)/2) and for online phase it is O(2n−k).

The message complexity is O(2(n+k)/2) in the precomputation phase and O(2n−k) in the

online phase. The memory complexity is O(2k). For k = n
3 , both precomputation and

online complexity becomes O(22n/3).
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4.2.4 Switch and Interchange structure

At Eurocrypt 2015, Leurent et al. have presented another interesting structure called

the switch and interchange structure [3]. Suppose we have two n bits hash functions H

and G simultaneously applied on a message M. We denote the walks for H and G as

ωj and αk respectively. The individual chaining values are denoted as ωij and α`k. We

denote the relation between the chaining values of H and G as:

(ωij , α
i
k)

mi−−→ (ωi+1
j , αi+1

k )

Switch is a set of walks with the following property:

(ωij0 , α
i
k0)

mi−−→ (ωi+1
j0

, αi+1
k0

)

where mi is the ith substring (multiple message blocks) of M.

(ωij0 , α
i
k0)

m
′
i−−→ (ωi+1

j0
, αi+1

k1
)

where m
′
i is a secondary substring. That is it jumps from (ωij0 , α

i
k0

) to (ωi+1
j0

, αi+1
k1

) on

a secondary substring m
′
i (see figure 4.7). This property can be designed for both ωj

and αk. The substrings mi and m
′
i are determined while building the switch. A switch

structure can be built with a complexity of O(2n/2) computations. By combining several

simple switches, we can build an interchange structure with initial chaining values iv1

and iv2 and ending points {Xj , j = 0 . . . 2k−1} and {Yj , j = 0 . . . 2k−1} (see figure 4.8).

The strength of this structure lies in the fact that it provides a message ending in any

state (Xj ,Yk) where Xj and Yk are independent of each other. An interchange structure

with 2k walks per function requires about 22k switches. Therefore, the total structure

can be built in O(22k+n/2).

H

G

ω0 ω0 ω0 ω0

α1 α1 α1 α1
α0 α0 α0 α0

Figure 4.7: Switching from (ω0, α0) to (ω0, α1) by using m
′

(dashed lines) instead of
m (solid lines) [3].
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H

G

X3
X2
X1
X0

Y3
Y2
Y1
Y0

Figure 4.8: Navigating through the interchange structure to reach (X2, Y1) [3].

4.2.4.1 Application in Preimage attack on XOR Combiner

Leurent et al. further showed a direct application of switch and interchange structure

by constructing a preimage attack on the XOR combiner in less than 2n computational

complexity [3]. Suppose the XOR combiner is using h and g compression functions, then

the attack works as follows:

1. The adversary precomputes an interchange structure of 2k size. Suppose the set

of endpoints for the two hash functions be X and Y.

2. When presented with a target hash value t, the adversary selects a random message

block m and computes two lists as follows:

X ′ = {X ′j = h(Xj ,m), Xj ∈ X}

and

Y ′ = {Y ′k = t⊕ g(Yj ,m), Yj ∈ Y}.

3. A match between these two lists is expected with probability 22k−n. Therefore,

after about 2n−2k random choices of m we get a match (j∗, k∗) such that,

h(Xj∗ ,m) = t⊕ g(Yk∗ ,m)

i.e.

h(Xj∗ ,m)⊕ g(Yk∗ ,m) = t.

4. By choosing substring M corresponding to (Xj , Yk) in the interchange structure,

and concatenating it with block m the adversary gets the required preimage.

Complexity Analysis. The computational complexity for this attack can be anal-

ysed in two parts,
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1. Building the interchange structure requires O(22k+n/2) computations.

2. The list collision requires O(2n−k) computations.

Therefore, the total computational complexity of this attack is O(22k+n/2) + O(2n−k).

For k = n
6 the precomputation cost equals online cost.

Apart from the above structures there is yet another popular structure called the kite

structure [38, 40]. The kite structure is a concatenation of a diverging and a converging

diamond. It has been used to construct attacks on the dithered hash [40] and the

concatenated hash [38].

4.3 Summary of Attacks on Some Iterated Hash Variants

In this section, we will summarise some of the attacks on hash twice, concatenated hash

and zipper hash. Most of these attacks are due to Andreeva et al. [4], and the last attack,

second preimage attack on zipper hash with strongly invertible compression functions,

is due to Chen et al. [5]. Note that, all the attacks in this section are applicable for

length padded messages (with minor modifications). So for simplicity we will ignore the

length padding.

4.3.1 Herding Attack on Concatenated Hash

Andreeva et al. gave a herding attack on the concatenated hash design using a double

pipe diamond (see [4] for detailed discussion). For compression functions f1 and f2, the

complete attack (illustrated in 4.9) can be summarised as follows:

1. In the pre computation phase, the adversary computes a 2` converging diamond

D1 using f1 computations. Starting from hD1 , a 2n−` + 2`·
n
2 Joux multicollision J

is computed using f1. The last ` · n2 cycles of J are used to construct a 2` diamond

structure D2 using f2. The adversary commits h‖g as the target hash value.

2. In the online phase, the adversary computes ha = f+
1 (iv1, P ) for the challenge

prefix P . Then, she uses O(2n−`) random message bocks to connect ha to D1. Let

the chain from ha to hD1 be ω. Then the adversary computes ga = f+
2 (iv2, P‖ω),

and uses the first n− ` cycles of J to connect ga to D2.
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iv1

iv2

ha

ga

h

g

P

P‖ω

n− ` ` · n2

Figure 4.9: Herding attack on Concatenated Hash [4].

Complexity Analysis. The computational complexity of this attack can be analysed

in two parts,

1. The precomputation cost is O(2n/2 + 2
n+`
2 ).

2. The online phase costs, O(2n−`).

For ` = n
3 , this optimises to O(22n/3).

4.3.1.1 Extension to Herding Attack on Hash Twice

The herding attack on hash twice scheme by Andreeva et al. [4] is similar to their attack

on concatenated hash. The only difference, here lies in the fact that here hb works as

iv2 for f2 (see figure 4.10). Also, the complexity analysis of this attack is similar to the

previous attack.

iv
ha

ga

hb

hb g

P

P‖ω

n− ` ` · n2

Figure 4.10: Herding attack on Hash Twice [4].
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4.3.2 Second Preimage Attack on Hash Twice

The hash twice scheme is also susceptible to second preimage attacks, as shown by

Andreeva et al. [4]. For compression functions f1 and f2, the attack can be described in

two stages:

1. In the precomputation phase, the adversary creates a [k, 2k + k − 1] expandable

message set E , followed by a (n− `+ 2
n`
2 ) Joux multicollision J using f1. The last

n`
2 cycles of J is used to construct a 2` converging diamond D using f2.

2. In the online phase, the adversary tries to hit the walk generated by the challenged

message from gb using random single block messages. Say it hits at hi, such that

the walk from gb to h is ω. Observe that, the adversary can now fix the message

say P from E (initializing it to any message of length i−n+ `− n`
2 − 1). Then the

adversary computes hb = f+
1 (ha, ω) and ga = f+

2 (hb, P ) and uses the first n − `
cycles of J to hit any leaf of D. This completes the attack.

iv
hi

h

iv
ha

ga

hb

hb gb
P

n− ` ` · n2k

Figure 4.11: Second preimage attack on Hash Twice [4].

Complexity Analysis. The computational complexity of this attack can be analysed

in two parts. For a O(2k) blocks message,

1. The precomputation phase takes O(2k + 2n/2 + 2
n+`
2 ) computations, and

2. The online phase takes O(2n−k + 2n−`) computations.

For k ≤ n
2 and ` = n

3 the offline and online complexities become O(2
2n
3 ).
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4.3.3 Existing Attacks on Zipper Hash

Zipper hash has been analysed with respect to various security properties. Andreeva et

al. [4] have worked on the herding attack aspect. Bagheri [60] has presented a multicol-

lision attack on single and multiple round zipper hash. Recently, Chen et al. [5] have

presented a second preimage attack on zipper hash with strongly invertible compression

functions. The multicollision attack is essentially a special case of the multicollision

attacks by Nandi et al. [59]. We are briefly summarizing the other two attacks below:

4.3.3.1 Chosen Target Forced Suffix attack

The conventional herding attack (CTFP) is not viable for the zipper hash because last

block of the second pass is the same as the first block of the first pass. So, an ad-

versary that can construct CTFP attack can actually invert the compression function.

Andreeva et al. [4] proposed a modified version of herding attack which works on forced

suffix instead of forced prefix. For compression functions f1 and f2 the CTFS can be

summarised as follows:

1. In the precomputation phase, the adversary will first create a 2
n`
2

+(n−`) Joux

multicollision set J for the first pass. Block-wise reverse of the first n`
2 cycles of

J is then used to construct a 2` converging diamond structure D for the second

pass. The adversary commits h = hD as target hash value.

2. In the online phase, the adversary computes hb = f+
1 (ha, S) and hc = f+

2 (hb, S
rev)

for the challenge suffix S. The last n− ` cycles of J are used to connect hc with

one of the leaf of D.

iv
ha

hb

hb
hc

h

` · n2 n− `

S

Srev

Figure 4.12: Herding Attack on Zipper Hash [4].

Complexity Analysis. The computational complexity is analysed in two phase:

1. The precomputation phase takes, O(2
n+`
2

+2 + (n− `+ n`
2 ) · 2n/2), and
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2. The online phase takes, O(2n−`) compression function calls.

For ` = n
3 , the complexity optimises to O(22n/3).

4.3.3.2 Second Preimage Attack on Zipper Hash with Strongly Invertible

f1

If the underlying f1 is strongly invertible then, we can construct a second preimage

attack using a combination of Kelsey-Schneier long message attack in the second pass

and meet-in-the-middle attack in the first pass. Chen et al. [5] have proposed an attack

along similar lines. We are summarising their attack with a small variation:

1. Generate a 2n Joux multicollision set J for the second pass. Split every n-blocks

message M ∈ J into halves, and collect the first half n/2 blocks in set M1 and

the other half n/2 blocks in M2.

2. Starting from hm generate a 2n/2 converging diamond structure D1 for the first

pass using the backward interface for f1 and the block-wise reverse of messages

M1 ∈M1.

3. Starting from ha, generate a [k, 2k+k−1]-expandable message set E for the second

pass.

4. Select at random a block m′i−1 until f2(hb, m
′
i−1) hits a chaining value appearing

in the second pass. Suppose it hits at position i.

5. Choose Me ∈ E such that no. of blocks in Me = i− n− 1.

6. Starting from iv compute f+
1 (mrev

0,i ||m′i−1||M rev
e ) to reach hj .

7. Starting from hj generate a 2n/2 diverging diamond structure D2 using f1 compu-

tations and the block-wise reverse of messages M2 ∈M2.

8. Apply meet-in-the-middle attack on LD1 and LD2 to connect hj and hm.
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iv h2k

h2k

h2k−i

h

hm

hahb

hi

hj

m0,i

n

k

E

Figure 4.13: Second preimage attack over Zipper hash with strongly invertible com-
pression functions [5].

Complexity Analysis. For a 2k blocks message, the attack takes O(2n/2+2n−k+2k)

computations (ignoring polynomial factors). This optimises to O(2n/2) for a k = n
2 .



Chapter 5

Some New Structures and

Analysis of Concatenated Hash

In this chapter we are proposing two new structures, chain and multi-pipe expandable

message set. The chain structure, in particular, is very interesting due to its simplicity.

We will discuss one major application of this structure in bringing down the complexity

of herding attack on iterated hash. Apart from the two structures, we will also present

two attacks on the concatenated hash under certain assumptions on the underlying

compression functions.

5.1 The Chain Structure

In essence, a chain is nothing but a walk generated by the iterated use of a compression

function f repeatedly over a message block m, i.e., formally,

A 2k chain starting at h and generated by message block m can be defined as, the

walk ω denoting f+(h,m2k).

The structure is as powerful as it is simple in definition. We will show the potential of

this structure by way of an example, the herding attack on iterated hash schemes.

5.1.1 Herding or chosen-target forced-prefix attack

Recall that the herding attack is a security game, in which the adversary has to first

commit a target hash value h, and then find a suffix S for a challenge prefix P , such

that H(P‖S) = h. This notion was first proposed by Kelsey and Kohno in [2].

40
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In their attack, a diamond structure is precomputed to herd any prefix (of valid length)

to the target hash value, in online phase. The diamond structure is a relatively costly

structure [38] which requires O(2
n+k
2 ) computations to construct a 2k diamond. So,

the precomputation costs O(2
n+k
2 ) and the online complexity for herding any prefix

to the target hash value is O(2n−k). The memory complexity is O(2k), due to the

diamond structure and the message complexity is O(2
n+k
2 ). The optimal computational

complexity, i.e., O(22n/3) is achieved for k = n
3 .

Here, we are presenting an attack with improved offline complexity and message com-

plexity. The attack replaces the 2k diamond structure with a 2k chain structure. The

complete algorithm is shown as procedure HERDING-ITERATED in algorithm 1 and illus-

trated in figure 5.1. The attack can be summarised as follows:

1. In the precomputation phase, the adversary computes a 2k chain C starting from a

random chaining value ha and message block m. From hb she computes a [k, 2k +

k−1] expandable message set E and commits the endpoint of E , say h as the target

hash value.

2. In the online phase, when the adversary is presented with a prefix P , she first

computes hc = f+(iv, P ) and then tries to hit C using single block messages. In

O(2n−k) tries, she is expected to hit C. Suppose the hit is at index i with message

block x. Now, E is initialized to appropriate length and a message of that length

, say ME is used to return the required suffix x‖m2k−i+1‖ME .

iv hc

ha

hb

hi

h

P

Figure 5.1: Herding iterated hash using chain structure.
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Algorithm 1: Building a 2k chain AND herding attack on iterated hash.

Procedure CHAINf(h, k,m)

Input: h ∈ {0, 1}n

Input: k ∈ N
Input: m ∈ {0, 1}n′

Output: A 2k chain and its endpoint h′.

1 h′ ← h

2 i← 0

3 while i < 2k do

4 C ⇐ h′

5 h′ ← f(h′,m)

6 i← i+ 1

7 return (h′, C)

Interactive HERDING-ITERATEDf()

8 ha
$←− {0, 1}n

9 m
$←− {0, 1}n′

10 (hb, C)←CHAINf(ha, k,m);

11 (h, E)←EXPMSGf(hb, k)

Chosen Target: h

Forced Prefix: P ∈ ({0, 1}n′ )+

12 hc ← f+(iv, P )

13 (hi, x)←HITTINGf(hc, C)

14 ME ← Ei
15 S ← x‖m2k−i+1‖ME
16 return S

Complexity Analysis. The offline computational complexity is O(2k + 2n/2) due to

the construction of the chain and expandable message set, and the online computational

complexity is O(2n−k). Observe that the complexity O(2k + 2n/2) of the offline phase of

our attack is less than the complexity O(2
n+k
2 ) of the offline phase of earlier attack for

0 < k < n.

In this attack, the optimal computational complexity of O(2n/2) is achieved, for k =
n
2 , which is a significant improvement over the optimal computational complexity of

O(22n/3), for k = n
3 , achieved in the earlier attack.

Another significant improvement is in the message complexity where the complexity is

reduced from O(2
n+k
2 ) to O(1), as only a single block of message is required. Similarly,

the offline memory complexity is reduced from O(2k) to O(n).

We will also use the chain structure in our analysis of concatenated and zipper hash,

and construct another structure called rho which uses the chain structure in principle.

These applications will further emphasise the utility of the chain.

5.2 Multi-Pipe Expandable Message Set

A multi-pipe expandable message set is essentially an expandable message set but with

an additional constraint that the expandable message set property should hold for mul-

tiple chaining value pairs. Formally,

An `-pipe is a set of ` 3-tuples of the form (ha, hb, f), such that f+(ha,m) = hb

for some message m.
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The `-pipe settings are generally considered for same messages, i.e., the message m

in the above definition is same for all of the ` tuples. For example, the concate-

nated hash evaluation, with underlying compression functions f and g, and initial

values iv1 and iv2, over a message m can be viewed as a 2-pipe (or double-pipe),

{(iv1, f
+(iv1,m), f), (iv2, g

+(iv2,m), g)}. Note that, the definition does not limit the

use of same compression function in multi-pipe setting. Now, it is easy to define the

multi-pipe expandable message set as,

An `-pipe [a, b] expandable message set is an [a, b] expandable message set for each

of the ` pipes.

In other words, a multi-pipe expandable message set can simultaneously provide us

with expandable message set for multiple chaining value pairs. This can be useful in

constructing attacks on multi-pass schemes such as the zipper hash and hash twice. This

property may also be useful in the analysis of hash combiners.

Before indulging ourselves in the construction of the multi-pipe structure observe that

similar notion exists for Joux multicollision. For example, to get a single collision on

double-pipe (see figure 5.2), we need 2n/2 multicollisions on the first pipe so that we

get 2n/2 messages to get a single collision on the second-pipe, i.e., a single collision on

double-pipe will have n
2 number of blocks in each arc.

ha hb

hc hd

n/2

Figure 5.2: Single collision in double-pipe.

Therefore, to get a single double-pipe collision, we need O(n2 · 2
n/2) computations. It is

easy to observe that finding 2k double-pipe multicollisions require O(nk2 ·2
n/2) computa-

tions (k single double-pipe collisions). Now, we will generalise this to ` pipes using the

following lemma.

Lemma 5.1. The computational complexity of constructing a 2k `-pipe multicollisions

is

O((
n

2
)`−1 · k · 2n/2)

.
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Proof. The proof is by induction on the number of pipes. The base case of ` = 1 is

trivially true. Suppose the lemma is true for `, then we will prove it for ` + 1. First,

observe that to get a 2n/2 `-pipe multicollisions we need

O((
n

2
)`−1 · n

2
· 2n/2) = O((

n

2
)` · 2n/2)

computations (by inductive hypothesis). Now, since we have 2n/2 multicollision messages

in ` pipes, therefore, we can have a single collision in ` + 1 pipes (by birthday attack).

So, a single (` + 1)-pipes multicollision requires O((n2 )` · 2n/2). By applying it k times

we will get 2k (` + 1)-pipes multicollisions. Hence, the total computational complexity

is

O((
n

2
)` · k · 2n/2),

which proves the claim. The result follows.

Now, we will extend this idea to a single pipe expandable message set. Suppose, while

constructing a 2k expandable message set, we insert a 2n/2 Joux multicollision after each

cycle (illustrated in figure 5.3) of the expandable message set. Now, we will apply these

messages on another pipe in the following manner,

1. For cycles from expandable message set, construct two separate walks α and β.

2. Use the intermediate 2n/2 Joux multicollision to collide α and β.

This will give a [nk2 + k, 2k + nk
2 + k − 1] double-pipe expandable message set.

h0 hk

h00 hkk

|m1| = 1

|m′1| = 2

n/2 |m2| = 1

|m′2| = 3

n/2 |mk| = 1

|m′k| = 2k−1 + 1

n/2

|x1| = n
2

+ 1

|x′1| =
n
2

+ 2

|x2| = n
2

+ 1

|x2| = n
2

+ 3

|xk| = n
2

+ 1

|x′k| =
n
2

+ 2k−1 + 1

Figure 5.3: A [nk2 + k, 2k + nk
2 + k − 1] double-pipe expandable message set.

Clearly it takes O(2k+(nk2 +k)·2n/2) computations to construct a [nk2 +k, 2k+ nk
2 +k−1]

double-pipe expandable message set. Again, this can be generalised to `-pipes, where

the computational complexity follows from the next theorem.
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Theorem 5.2. The computational complexity of constructing a [(n2 )`−1 · k + k, 2k +

(n2 )`−1 · k + k − 1] `-pipe expandable message set is

O(2k + ((
n

2
)`−1 + 1) · k · 2n/2)

.

Proof. A formal proof for this theorem can be given on similar lines as in lemma 5.1.

Note that we are still performing the computations required for [k, 2k+k−1] expandable

messagse set in single pipe setting. Add to this the complexity for constructing a 2k

`-pipes multicollision and we get the required complexity. The result follows.

For double-pipe, we will denote this construction as a set of two algorithms DPIPE-

ONE-EXPMSG and DPIPE-TWO-EXPMSG. The first of these will be used to construct the

multicollision appended expandable message set (structure with black arcs in figure 5.3),

and the second will be used to construct the double pipe expandable message using the

output set of first algorithm.

5.3 Analysis of Concatenated Hash

In this section, we will present two attacks on weaker version of concatenated hash. The

first attack is a second preimage attack on concatenated hash with a strongly invertible

component and the second attack is a preimage attack on concatenated hash with one

weakly and one strongly invertible component.

5.3.1 Second Preimage Attack on Concatenated Hash

Here we assume that one component of the concatenated hash is MD hash and the other

component is strongly invertible. Under these assumptions, we can construct a second

preimage attack on the concatenated hash as follows:

1. For the MD hash component, start from iv1 and compute a 2n Joux multicollision

set J . From the endpoint of J construct a Kelsey-Schneier long-message second

preimage attack on the rest of the chain. Together with the multicollision set, this

step gives 2n second preimages for the MD component.

2. For the strongly invertible component, divide J into two sets M1 and M2 of
n
2 blocks each. Invert the strongly invertible component on the second preimage
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string found in step 1 till hi. Say this inversion ends at ga. Now, construct a

meet-in-the-middle attack between iv2 and ga using M1 and M∈ respectively to

get the valid second preimage message.

iv1

h1

hi
h

h2

iv2 ga
g

n

ω
′

x

Figure 5.4: Second preimage attack on concatenated hash.

Complexity Analysis. The computational complexity for this algorithm follows

from the Kelsey-Schneier attack complexity, i.e., O(2n/2) in optimal case. The message

and memory complexity are similar to those in the Kelsey-Schneier attack.

5.3.2 Preimage Attack on Concatenated Hash

This attack assumes that one of the component of concatenated hash is weakly invertible

and the other one is strongly invertible. The attack as illustrated in figure 5.5 can be

summarised as follows:

1. For the weakly invertible component, we start at iv1 and compute a 2n Joux

multicollision set J . Divide J into two sets M1 and M2 of n
2 blocks each.

2. From the target hash value compute 2n/2 random chaining values using the weakly

invertible interface, and compute 2n/2 random chaining values from ha using for-

ward queries. Use these two sets of 2n/2 chaining values to compute a 2-block

message x between ha and h.

3. Invert the strongly invertible component on x from g and then use M1 from iv2

andM2 from ga to construct a meet-in-the-middle attack. The walk from iv2 to g

will give a preimage in both the components, and hence in the concatenated hash.
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iv1
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Figure 5.5: Preimage attack on concatenated hash.

Complexity Analysis. The complexity of this algorithm can be analysed in a similar

way as in 5.3.1 and it gives similar bounds of O(2n/2). Note that, this attack is a minor

improvement over the attack suggested by Leurent et al. in [3]. The earlier attack works

only when both the components are strongly invertible, whereas, our attack even works

for a relaxed condition. This also shows that the bound computed by Hoch et al. in [41]

is also applicable when one of the components is weakly invertible.



Chapter 6

Analysis of Zipper Hash

In this chapter, we are presenting second preimage, preimage and herding attacks on

the zipper hash design. The attacks on general zipper hash requires a precomputed

structure of O(n) space. We refer this structure as Rho structure. We will start off with

a detailed discussion on the construction of this structure. The second preimage attack

on relaxed zipper hash requires the construction of a double pipe expandable message

set and a chain structure (as discussed in chapter 5). Note that, all the attacks in this

section are equally applicable in the presence of padding rules also. So, for the sake

of simplicity, we will be ignoring the padding rules here. Instead, we will explain the

modifications required for incorporating padding.

6.1 Rho Structure

A 2k-rho structure is a rho-shaped structure with an unit cycle length, i.e., a self loop

and a tail of size 2k denoted by Tρ. Moreover the labels for the tail as well as the self-loop

are the same (which is m in Fig. 6.1).

h0 h2k
m m m

m

≡≡ hsρ htρ
mρ

Tρ

2k

Figure 6.1: Rho structure and its shorthand representation.

The Rho structure is the core of our (second) preimage attacks on the zipper hash.

Based on the properties of the underlying compression functions, it can be constructed

in two ways:

48
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6.1.1 Under Random Oracle Assumption

When the underlying compression functions f1 and f2 behave as random oracle without

any weaker interface, the rho structure can be constructed as follows:

1. In the first phase, a fixed point chaining value h and the corresponding message

block m is found for the given compression function. This is shown as subroutine

FIXED-POINT in Algo. 2.

2. In the second phase, the aim is to construct a 2k-blocks chain to the fixed point

found above using the block m repeatedly. This is done by choosing a random

chaining value, and repeatedly applying m. In at most 2n computations, it is

expected that the chain will hit h1.

We denote the algorithm to construct this structure as RHO(k) which returns hsρ, the start

of rho, htρ, the tip of rho, and the rho label mρ. The rho structure can be extended,

in which case, a 2k long chain is computed from the tip of rho.2 We will be using this

extended version of rho in our second preimage attack.

Algorithm 2: Building a 2k-rho structure.

Algorithm RHOf,g(k)
Input: k ∈ N
Output: A 2k Rho, ρ.

1 (hρt ,m)← FIXED-POINTf()

2 h
$←− {0, 1}n

3 i← 0

4 h′ ← h

5 while (1) do

6 h′ = g(h′,m)

7 i← i+ 1

8 if i = 2k then

9 if h′ = htρ then

10 hsρ ← h

11 return ρ : (hsρ, h
t
ρ,m)

12 else

13 h← g(h,m)

14 i← i− 1

Procedure FIXED-POINTf()

Output: A fixed point pair, (h,m).

15 h
$←− {0, 1}n

16 while (1) do

17 m
$←− {0, 1}n′

18 if f(h,m) = h then

19 return (h,m)

Complexity Analysis. Both the FIXED-POINT algorithm and the RHO algorithm takes

O(2n) computations. So, the computational complexity of this algorithm is O(2n). The

1Note that, we are ignoring the cases in which either h is reached before 2k or there is a cycle in the
path. In these cases, one can start with a new node to reach already obtained nodes from which the tip
node is reachable.

2Note that, this requires either a message block other than mρ or a different compression function
computation.
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algorithm requires O(n) memory for book-keeping. Since about 2n single block messages

are tried in FIXED-POINT algorithm, the message complexity is O(2n).

6.1.2 Under Random Oracle with Multiple Fixed Points Assumption

A compression function is said to have multiple fixed points weakness, if computing

multiple fixed points for a given message block is easy. Some of the insecure PGV

schemes [49] have this property. We do not have knowledge about any secure scheme

exhibiting this property, but under this weak assumption the rho structure can be con-

structed in less than 2n computations. The main steps can be summarised as follows:

1. The fixed point algorithm MULTI-FIXED-POINT queries a multiple fixed point oracle

internally. It will return a list L of 2k fixed points and corresponding message

block m for input k.

2. The rho construction algorithm MULTI-RHO applies the 2k chain construction tech-

nique of RHO algorithm. But here the process stops at 2k steps. Suppose the set of

endpoints of these chains be C. The algorithm then applies list collision between

L and C to find the required tip of rho from L and the tail of rho from C.

h01
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h0i

h0
2n/2

h2
k−2

1

h2
k−2

2

h2
k−2
i

h2
k−2

2n/2

m2k−2

m2k−2

m2k−2

m2k−2

m

m

m

m

Figure 6.2: Illustration of rho construction in multiple fixed points case.
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Algorithm 3: Building a 2k-rho structure in multiple fixed points case.

Algorithm MULTI-RHOf,g(k)
Input: k ∈ N
Output: A 2k Rho, ρ.

1 (L,m)← MULTI-FIXED-POINTf()

2 i← 0

3 while i < 2n/2 do

4 h
$←− {0, 1}n

5 C1 ⇐ h

6 C2 ⇐ h

7 i← i+ 1

8 i, j ← 0

9 while i < 2k do

10 while j < 2n/2 do

11 hj ⇐ Cj2
12 hj ← g(hj ,m)

13 Cj2 ⇐ hj

14 j ← j + 1

15 i← i+ 1

16 (i, j)←LISTCOLL(L, C2))

17 return ρ : (Cj1,Li,m)

Procedure MULTI-FIXED-POINTf()

Output: A message block m and a 2n/2 list of

fixed points L for m, (L,m).

18 m
$←− {0, 1}n′

19 i← 0

20 while i < 2n/2 do

21 h← Of

22 L ⇐ h

23 i← i+ 1

24 return (L,m)

Complexity Analysis. The computational complexity for the MULTI-FIXED-POINT

algorithm is O(2n/2) and MULTI-RHO algorithm takes O(2k+n
2 ) computations. So, the

computational complexity of this algorithm is O(2k+n
2 ), which is less than 2n for k < n

2 .

The algorithm requires O(2n/2) memory for storing L, C1 and C2. Since only a constant

number of single block messages are tried in MULTI-FIXED-POINT algorithm, the message

complexity is O(1).

6.2 Second Preimage Attacks

The problem of a long-message second preimage attack on the zipper hash construction

is to the best of our knowledge an open problem. Though, Chen et al. showed a second

preimage attack on the zipper hash design with weaker compression functions [5], but

the zipper hash based on compression functions under random oracle model has seen

very less analysis. The forced-suffix attack by Andreeva et al. [4] is the only substantial

attack on this design. The difficulty lies in three facts.

1. First, f1 and f2 are independent, i.e., the two pass scheme can use completely

independent compression functions for the two passes.

2. Second, the message blocks which are processed last in the first pass are processed

first in the second pass.
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3. Third, and a bit easier problem is to accommodate the length padding operations.

These three facts compel the adversary to fix the meeting point of first and second

pass operations in such a way that it does not violate the message block symmetry and

incorporates the padding rule. This makes it hard to apply known attack techniques and

structures[1, 2, 39, 40], which generally work for iterated hash designs and its variants.

We are presenting here two attacks, one on the zipper hash and another on the relaxed

variant of zipper hash (f1 = f2). Both these attacks require less than O(2n) online

computational complexity.

6.2.1 Second Preimage Attack on Zipper Hash

The second preimage attack requires a one-time O(2n) precomputation. This is similar

to the TMTO attack technique (as discussed in chapter 4). The complete algorithm is

given as procedure SECOND-PREIMAGE in algorithm 4, and illustrated in figure 6.3. We

are summarising the main points below:

1. In the precomputation phase, a 2k rho structure is computed using f1 computa-

tions.

2. In the online phase, the padding block is applied after the tip of rho and the

structure is extended using f2 computations.

3. From the endpoint ha of the extension, a 2n−k Joux multicollision J is constructed

using f2 computations.

4. From hb a [t, 2t + t− 1] expandable message set E is computed. This takes care of

the length padding.

5. From hc hitting technique is used to compute a one block connection to the second

pass chain. This fixes the message length for E (set to i− 2k − (n− k)− 1).

6. Suppose the walk from hb to h is ω and hd = f+
1 (iv, ωrev). At last, the messages

from J are used in block-wise reverse fashion to get a link with Tρ.

7. The walk from iv to htρ gives the required second preimage message.
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Figure 6.3: Second preimage attack on Zipper hash.

Algorithm 4: Second preimage attack on Zipper and Relaxed Zipper hash.

Algorithm SECOND-PREIMAGEf1,f2(m)

Input: m ∈ ({0, 1}n′ )+ of 2t blocks.

Output: m′ ∈ ({0, 1}n′ )+

Data: 2k-Rho, ρ.

1 (L1,L2)← ZIPPERf1,f2(iv,m)

2 ha ← f+2 (htρ,m
2k
ρ )

3 (hb,J )← COLLf2(ha, n− k)

4 (hc, E)←EXPMSGf2(hb, t)

5 (m,hi)← HITTINGf2(hc,L2)

6 ME ← E(i−2k−(n−k)−1)

7 hd ← f+1 (iv,m2t−i||m||Mrev)

8 D ← DIVDIAMf1(hd, k,J rev)

9 (hj ,Mj)← LISTCOLL(LD, Tρ)

10 m′ ← m2t−i||m‖Mrev
E ‖Mj‖m2k−1

ρ

11 return m′

Algorithm RELAXED-SECOND-PREIMAGEf1,f2(m)

Input: m ∈ ({0, 1}n′ )+

Output: m′ ∈ ({0, 1}n′ )+

12 (L1,L2)← ZIPPERf1,f2(iv,m)

13 ha
$←− {0, 1}n

14 m← mpad

15 C ← CHAIN-VARIANTf1(ha, k,m)

16 (hc,J )← COLLf2(hb, n− k)

17 (hd,DE1)← DPIPE-ONE-EXPMSGf2(hc, k)

18 (he, E)← EXPMSGf2(hd, t)

19 (m′, hi)← HITTINGf2(he,L2)

20 ME ← E(i−2k−nk
2
−n−1)

21 hf ← f+1 (iv,m2t−i‖m′‖Mrev
E )

22 (hg ,DE2)←DPIPE-TWO-EXPMSGf2(hf , k,DE1);

23 D ← DIVDIAMf1(hg , k,J rev)

24 (hj ,Mj)← LISTCOLL(LD,P)

25 MDE ← DE(2k+nk
2

+k− j
2
)

26 MC ← m
2k+1−j−2

2

27 m′ ← m2t−i‖m′‖ME‖Mj‖MDE‖MC
28 return m′

Complexity Analysis. Clearly, the precomputation phase costs, O(2n) in a random

oracle model and O(2n/2+k) in multiple fixed points oracle. Assuming k ≤ n
2 , and a 2t

blocks message (where t = O(k)), the overall online complexity is O(2n−k). For k = n
2

this optimises to O(2n/2). The memory complexity for this algorithm is O(2k) and the

message complexity is O(2n/2). Note that, in the above algorithm as the message size

increases beyond O(2n/2), the complexity increases.
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6.2.2 Second Preimage Attack on Relaxed Zipper Hash

Recall that a relaxed zipper hash is zipper hash with f1 and f2. This attack utilises two

structures, namely the chain and the double pipe expandable message set, as introduced

in the previous chapter. It uses a variant of the chain in which we only store the even

indices. This algorithm is denoted by procedure CHAIN-VARIANTf (h, k,m) as shown in

algorithm 5. The attack is similar to the previous one with some critical changes in

the handling of length padding. The complete attack algorithm is shown as procedure

RELAXED-SECOND-PREIMAGE in algorithm 4 and illustrated in 6.4. The main points of

the attack can be summarised as:

1. First, a 2k+1−1 chain structure is computed using the padding block of m, storing

the even indices in C.

2. From the endpoint hb of C, a 2n−k Joux multicollision J is constructed.

3. From the endpoint hc of J first pipe DE1 of a [nk2 +k, 2k + nk
2 +k− 1] double pipe

expandable message DE is constructed and from its endpoint hd a [t, 2t + t − 1]

expandable message set E is constructed.

4. From the endpoint he of E hitting technique is used to compute a one block con-

nection to the second pass chain. This fixes the message length from E (set to

i− 2k − nk
2 − n− 1).

5. Suppose the walk from h to he is ω and hf = f+
1 (iv, ωrev). From hf the messages

in DE1 are used to construct the second pipe DE2 of the double pipe expand-

able message set DE . This will help in compensating for the length uncertainty

produced by the chain collision in next step.

6. Now, the messages from J are used in block-wise reverse fashion to get a matching

with C. This fixes the lengths of messages in DE1 and DE2 (set to nk
2 + k+ j

2), for

matching at index j in C). The midpoint from index j to 2k+1 is shown as hm.

7. The walk from iv to index hm in the chain structure gives the required second

preimage message.
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Figure 6.4: Second preimage attack on Relaxed Zipper Hash.

Complexity Analysis. Note that, the precomputation phase is not necessary for

this algorithm. The computational complexity can be analysed in four parts,

1. The chain structure takes O(2k) computations.

2. The double pipe expandable message set takes O(2k+(nk2 +k)·2n/2) computations.

3. The expandable message set E and the Joux multicollision costO(2t+t·2n/2+2n−k).

4. The hitting process takes O(2n−k) computations.

For t = O(k) and k = n
2 the overall complexity becomes O(2n/2). The memory com-

plexity is O(2k) and the message complexity is O(2n/2). As in 6.2.1, the complexity

increases as the message size increases beyond O(2n/2).

Algorithm 5: Building a variant of chain of 2k+1 − 1 length using m repeatedly.

Procedure CHAIN-VARIANTf(h, k,m)

Input: h ∈ {0, 1}n

Input: k ∈ N
Input: m ∈ {0, 1}n′

Output: A 2k list of chaining values at 2 block difference.

1 h′ ← h

2 i← 1

3 C ⇐ h′

4 while i < 2k do

5 h′ ← f(h′,m2)

6 P ⇐ h′

7 i← i+ 1

8 return C
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6.3 Preimage Attacks

The preimage security of zipper hash has not been studied up until now. With an

assumption, that the finalisation function is identity, we are presenting three preimage

attacks on the zipper hash and its relaxed variants. The first two attacks require a

weakly invertible f2, and the third attack requires a strongly invertible f2 (see chapter 2

for notion of weakness).

6.3.1 Using Weak Invertibility of f2

Recall that a compression function f is said to have weak invertible if given h
′

it is easy

to compute (h,m) pairs such that h
′

= f(h,m). The attacks in this subsection may not

work for padded message, as the adversary has no control whatsoever on the preimages

returned by f−1.

6.3.1.1 Preimage Attack on Zipper Hash

The preimage attack is similar in its philosophy to the second preimage attack discussed

in 6.2.1. It uses a precomputed 2n/2 rho structure where the fixed point is computed on

f2. The complete attack algorithm is shown as procedure WEAK-PREIMAGE in algorithm 6

and illustrated in figure 6.5. The attack can be summarised as follows:

1. In the precomputation phase, a 2n/2 rho structure is constructed where the tail is

constructed using f1 and the tip is computed using f2. From the tip of rho, a 2n/2

Joux multicollision set J is constructed.

2. In the online phase, meet-in-the-middle is used to find a two block linking message

between hb and the target hash value h3. The two block string is ω (say) and

hc = f+
1 (iv, ω) (say). The last step is to use the messages from J in block-wise

reverse fashion to get a matching with Tρ. The walk from iv to htρ gives the

required preimage message.

3Note that, here we are assuming that f2 produces random and distinct preimages at each invocations.
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Figure 6.5: Preimage attack on Zipper hash with weakly invertible f2.

Algorithm 6: Preimage attacks with weakly invertible f2.

Algorithm WEAK-PREIMAGEf1,f2(h)
Input: h ∈ {0, 1}n

Output: m ∈ ({0, 1}n′ )+

Data: 2k RHO, ρ.

1 (ha,M)← COLLf2(h
t
ρ,
n
2
)

2 (m1,m2)← MEET-IN-MID
f2,f

−1
2

(ha, h)

3 hb ← f+1 (iv,m2||m1)

4 D ← DIVDIAMf1(hb,Mrev)

5 (hj ,Mj)← LISTCOLL(LD, Tρ)

6 m← m2||m1||Mj ||m2k−j
ρ

7 return m

Algorithm RELAXED-WEAK-PREIMAGEf1,f2(h)
Input: h ∈ {0, 1}n

Output: m ∈ ({0, 1}n′ )+

8 h
$←− {0, 1}n

9 m
$←− {0, 1}n′

10 C = VARIANT-CHAINf2(h, k,m)

11 (ha,M)← COLLf2(h
′, n

2
)

12 (m1,m2)← MEET-IN-MID
f2,f

−1
2

(ha, h)

13 hb ← f+1 (iv,m2||m1)

14 D ← DIVDIAMf1(hb,Mrev)

15 (hj ,Mj)← LISTCOLL(LD, C)

16 m← m2||m1||Mj ||m
2k+1−j−2

2
ρ

17 return m

Complexity Analysis. All the online computations cost O(2n/2) and hence the

overall online complexity is O(2n/2). The offline phase requires O(2n). The memory and

message complexity are also O(2n/2). Here, the offline complexity becomes O(2k+n/2)

for multiple fixed points assumption, in which case, the offline and online computational

complexity becomes O(23n/4) and memory complexity reduces to O(2n/4) for k = n
4 .

6.3.1.2 Preimage Attack on Relaxed Zipper Hash

As in 6.2.2, the preimage attack on the relaxed zipper hash uses a 2
n
2

+1−1 chain instead

of the rho structure and hence does not require any precomputation. The rest of the

attack is similar to the previous attack on zipper hash. The complete algorithm is shown

as procedure RELAXED-WEAK-PREIMAGE in algorithm 6 and illustrated in figure 6.6. The

complexity analysis is also similar to the previous attack.
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Figure 6.6: Preimage attack on Relaxed Zipper Hash with weakly invertible f2.

6.3.2 Using Strong Invertibility of f2.

If the underlying f2 function is strongly invertible then we can easily construct a preim-

age attack using Joux multicollision structure and meet in the middle technique. The

complete algorithm is shown as procedure STRONG-PREIMAGE in algorithm 7 and illus-

trated in figure 6.7. The attack can be summarised as follows:

1. In the first phase, starting at iv a 2n Joux multicollision J is constructed using

f1. J is then divided into two sets M1 and M2 of n
2 cycles each.

2. In the second phase, messages from M1 and M2 are used in block-wise reverse

to construct a meet-in-the-middle attack between ha and the target hash value h.

The block-wise reverse of the linking message between ha and h gives the required

preimage.

Complexity Analysis. The computational, memory and message complexity are

O(2n/2) each.

6.3.2.1 Application to Herding Attack on Zipper Hash

If the underlying f2 function of the zipper hash is strongly invertible then, the adversary

can use the preimage attack procedure, to herd any prefix or suffix to a target hash

value. This is shown as the interactive procedure STRONG-HERDING in algorithm 7.
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Figure 6.7: Preimage attack on Zipper hash with strongly invertible f2.

Algorithm 7: Preimage and Herding attack on Zipper hash with strongly invertible f2.

Algorithm STRONG-PREIMAGEf1,f2(h)
Input: h ∈ {0, 1}n

Output: m ∈ ({0, 1}n′ )+

1 (ha,M1,M2)← COLLf1(iv, n)

2 D1 ← DIVDIAMf2(ha,Mrev
2 )

3 D2 ← CONVDIAM
f−1
2

(h,Mrev
1 )

4 (mD1 ,mD2 )← LISTCOLL(LD1 ,LD2)

5 m← mrevD2
||mrevD1

6 return m

Interactive STRONG-HERDINGf1,f2()

Chosen Target: h
$←− {0, 1}n

Forced Prefix: mp ∈ ({0, 1}n′ )+

7 ha ← f+1 (iv,mp)

8 hb ← (f−1
2 )+(h,mrevp )

9 reset iv := ha

10 ms ←STRONG-PREIMAGEf1,f2(hb)

11 return ms



Chapter 7

Conclusion and Future Work

In this thesis, we have mainly focussed on two verticals. First, to summarise the state-

of-the-art in cryptanalysis of iterated hash function and its variants. Second, we have

proposed some new structures and their application in constructing attacks on iterated

hash, concatenated hash, and zipper hash. In section 7.1, we will summarise all the ex-

isting results, and section 7.2 summarises the results proposed in this thesis. Section 7.3

enumerates some possible applications and future work based on our results.

7.1 Summary of Existing Structures and Attacks

We have reviewed (see chapter 4) most of the popular attack structures such as Joux

multicollision, Kelsey-Schneier expandable message set, Diamond structure and others.

We have also reviewed the applications of these structures in constructing attacks on

the iterated hash design and its variants such as concatenated hash, hash twice, XOR

combiner and others. We summarise the complexity results for these structures and

attacks in tables 7.1, 7.2, 7.3, 7.4, and 7.5.

60
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Structures Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Joux multicol-

lision [37]

O(k · 2n/2) O(kn) O(2n/2) For a 2k Joux multicollision set.

Expandable

Message [1]

O(2k+k ·2n/2) O(kn) O(2n/2) For a [k, 2k+k−1] expandable message

set.

Diverging Dia-

mond

O(2k) O(2k) O(1) For a 2k diverging diamond.

Converging Di-

amond [2]

O(2(n+k)/2) O(2k) O(2(n+k)/2) For a 2k converging diamond using for-

ward queries.

Reverse Dia-

mond [5]

O(2k) O(2k) O(1) For a 2k reverse diamond.

Switch and

Interchange

Structure [3]

O(22k+n/2) O(2k) O(22k+n/2) For a 2k switch and interchange struc-

ture.

Table 7.1: Complexity results for existing attack structures.

Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Multicollision

Attack [37]

O(2n/2) O(kn) O(2n/2) Ignoring the factor k.

Second Preim-

age Attack [1]

O(2n/2 +

2n−k + 2k)

O(2k) O(2n/2+2n−k) For k = n
2

this optimises to O(2n/2).

Herding At-

tack [2]

O(2n/2 +

2(n+k)/2 +

2n−k)

O(2k) O(2(n+k)/2) The offline and online complexity is

O(22n/3) for k = n
3

.

Table 7.2: Complexity results for existing attacks on the iterated hash.

Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Collision At-

tack [37]

O(2n/2) O(n2) O(2n/2) Ignoring the factor n
2

.

Preimage

Attack [37]

O(2n) O(n2) O(2n/2) Ignoring the factor n.

Herding At-

tack [4]

O(2n/2 +

2(n+k)/2 +

2n−k)

O(2k) O(2(n+k)/2) The offline and online complexity is

O(22n/3) for k = n
3

.

Table 7.3: Complexity results for existing attacks on the concatenated hash.
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Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Herding At-

tack on Hash

Twice [4]

O(2n/2 +

2(n+k)/2 +

2n−k)

O(2k) O(2(n+k)/2) The offline and online complexity is

O(22n/3) for k = n
3

.

Second Preim-

age Attack on

Hash Twice [4]

O(2k + 2n/2 +

2(n+`)/2 +

2n−k + 2n−`)

O(2`) O(2(n+`)/2) The offline and online complexity is

O(22n/3) for k = O(`), and ` = n
3

.

Preimage At-

tack on XOR

combiner [3]

O(22k+n/2 +

2n−k)

O(2k) O(22k+n/2) The offline and online complexity is

O(25n/6) for k = n
6

.

Table 7.4: Complexity results for existing attacks on Hash twice and XOR hash
combiner.

Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Herding At-

tack [4]

O(2n/2 +

2(n+k)/2 +

2n−k)

O(2k) O(2(n+k)/2) This is a forced suffix attack, where of-

fline and online complexity is O(22n/3)

for k = n
3

.

Second Preim-

age Attack [5]

O(2n/2 +

2n−k + 2k)

O(2k) O(2k + 2n/2) This attack works for strongly invert-

ible f1, where offline and online com-

plexity is O(2n/2) for k = n
2

.

Table 7.5: Complexity results for existing attacks on the zipper hash.

7.2 Summary of Our Structures and Attacks

We have proposed three new structures, viz., the chain structure, the multi-pipe ex-

pandable message set and the rho structure (see chapter 5 and chapter 6). We have

also showed significant applications of these structures in constructing attacks. Though

the chain structure seems an ordinary structure, but it has some important applications

as demonstrated in our herding attack on the iterated hash, (second) preimage attack

on the zipper hash and preimage attack on the concatenated hash. In particular, the

herding attack is a surprising result where the complexity is reduced from O(22n/3) to

O(2n/2). The multi-pipe expandable message set is used in combination with a variant

of the chain structure in constructing a second preimage attack on the relaxed zipper

hash. This is again an important result, as it shows that if the underlying functions

are identical, then the extra pass of zipper hash doesn’t offer any amplification in the

second preimage security. The rho structure is the core of our (second) preimage attack

on the zipper hash. Though the structure is inefficient to compute in online phase for

random oracle model, but if the compression function has multiple fixed points, the rho

construction can be done in less than 2n computations. We compile the complexity

results for the proposed structures in table 7.6.
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Structures Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Chain Struc-

ture (see

chapter 5)

O(2k) O(n) O(1) For a 2k chain structure.

Multi-pipe Ex-

pandable mes-

sage (see chap-

ter 5)

O(2k +

((n
2

)`−1 +

1) · k · 2n/2)

O(kn`−1) O(2n/2) For a [(n
2

)`−1 · k+ k, 2k + (n
2

)`−1 · k+

k − 1] expandable message set.

Rho structure

(see chapter 6)

O(2n) O(n) O(2n) For a 2k rho structure, under random

oracle assumption.

Rho structure

(see chapter 6)

O(2k+n/2) O(2n/2) O(1) For a 2k rho structure, under multiple

fixed point assumptions.

Table 7.6: Complexity results for attack structures proposed in this thesis.

With regard to attacks, we have presented a complete analysis of the zipper hash and

its relaxed variant (see chapter 6), with regard to three security properties, namely,

preimage, second preimage and herding attack resistance. Our results are surprising, as

the zipper hash has resisted most of the known attacks [1, 2, 4]. We have also proposed

(second) preimage attacks on concatenated hash with weak compression functions. Our

preimage attack on the concatenated hash is a minor improvement over the attack given

by Leurent et al. [3]. It also shows that the bound given by Hoch et al. in [41] is also

applicable when one of the components is weakly invertible. We assemble the complexity

results for all these attacks in tables 7.7, 7.8, and 7.9.

Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Herding Attack

on Itertaed

Hash (see

chapter 5)

O(2k + 2n/2 +

2n−k)

O(2k) O(2n/2) The offline and online complexity is

O(2n/2) for k = n
2

.

Second Preim-

age Attack on

Concatenated

Hash (see

chapter 5)

O(2n/2 +

2n−k + 2k)

O(2k) O(2n/2) This attack works for one weakly in-

vertible and one MD hash component.

The offline and online complexity op-

timises to O(2n/2) for k = n
2

.

Preimage

Attack on Con-

catenated Hash

(see chapter 5)

O(2n/2) O(2n/2) O(2n/2) This attack works for one weakly in-

vertible and one strongly invertible

component.

Table 7.7: Complexity results for attacks on iterated hash and concatenated hash
proposed in this thesis.



Chapter 7. Conclusion and Future Work 64

Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Second Preim-

age Attack (see

chapter 6)

O(2n + 2n/2 +

2n−k + 2k)

O(2k) O(2n/2) The online complexity optimises to

O(2n/2) for k = n
2

. Note that the of-

fline cost becomes O(2k+n/2) for mul-

tiple fixed points oracle, i.e., the offline

and online complexity become 23n/4

for k = n
4

.

Preimage

Attack (see

chapter 6)

O(2n + 2n/2) O(2n/2) O(2n/2) This attack works for weakly invert-

ible f2. The offline cost becomes

O(2k+n/2) for multiple fixed points or-

acle, i.e., the offline and online com-

plexity become 23n/4 and memory

complexity reduces to O(2n/4) for k =
n
4

.

Preimage

Attack (see

chapter 6)

O(2n/2) O(2n/2) O(2n/2) This attack works for strongly invert-

ible f2.

Herding Attack

(see chapter 6)

O(2n/2) O(2n/2) O(2n/2) This attack works for strongly invert-

ible f2, and utilises the preimage at-

tack technique.

Table 7.8: Complexity results for attacks on zipper hash proposed in this thesis.

Attacks Computational

Complexity

Memory Com-

plexity

Message Com-

plexity

Remarks

Second Preim-

age Attack (see

chapter 6)

O(2n/2 + 2k +

2n−k)

O(2k) O(2n/2) The offline and online complexity op-

timises to O(2n/2) for k = n
2

.

Preimage

Attack (see

chapter 6)

O(2n/2) O(2n/2) O(2n/2) This attack works for weakly invertible

f2.

Table 7.9: Complexity results for attacks on relaxed zipper hash proposed in this
thesis.

We can summarise our main contributions and results as follows:

1. The chain structure and its applications, particularly, the improved herding attack

on iterated hash (see chapter 5).

2. The multi-pipe expandable message set, which is used along with the chain struc-

ture in attacks on relaxed zipper hash (see chapter 5 and 6).

3. The rho structure and (second) preimage attacks on the zipper hash (see chapter 6).

4. (Second) preimage attacks on the concatenated hash, under certain weakness as-

sumptions on the underlying compression functions (see chapter 5).
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7.3 Possible Applications and Future Work

The structures and attacks presented in this thesis seem to have some nice applications.

These results have also raised some hope for solution to some existing problems. Here

we are enumerating few of them:

1. Applications of chain structure. The power of chain structure is evident from

the improved herding attack (refer chapter 5). We believe that application of this

structure to other attacks, especially, to the attacks based on diamond or elongated

diamond structure, can help in reducing their complexity.

2. Low memory attacks using chain structure. Another line of research can be

the application of chain structure in constructing attacks with memory constraints.

Note that, a chain structure can simply be represented by its start and end points,

and a single message block. The intermediate chaining values can be computed

on demand. It is our belief that this structure can be used in combination with

lambda attack to reduce memory usage.

3. Applications of multi-pipe expandable message set. The multi-pipe ex-

pandable message set seems to give a lot of power to the adversary in construct-

ing attacks on multi-pass schemes. We have presented one application, second

preimage on relaxed zipper hash. It will be interesting to apply this on other

constructions.

4. Second preimage attacks and their complexity. One problem which remains

open is the problem of long-message second preimage attack on concatenated hash.

We have solved this problem to some extent for the zipper hash scheme. Future

works can be carried out in reducing the complexity of precomputation phase of

this attack. Another approach to this problem, requires a diamond structure with

same labels along all the paths from the leaf nodes to the root node. Investigating

the possibility of such a structure will be interesting.
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