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Abstract
The sum-capture problem for abelian groups is generalized over any arbitrary finite ring, for an arbitrary

number of sets, and in presence of an arbitrary multiplicative mask.

1 The problem
Let 𝑅 be a finite ring and fix positive integers 𝑝,𝑞 < |𝑅| = 𝑁. Let 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 be a random sequence (or
equivalently, an ordered multiset) over 𝑅. For any 𝑘 ≥ 2, any 𝛼 ∈ 𝑅𝑘 with at least 2 non-zero coordinates,
and any 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, we define

𝜇𝛼(𝐴,𝐵1,𝐵2,…,𝐵𝑘) = |{(𝑎,𝑏1, 𝑏2,…,𝑏𝑘) ∈ 𝐴×𝐵1×𝐵2×⋯×𝐵𝑘 ∶ 𝑎 =
𝑘

∑
𝑖=1

𝛼𝑖 ⋅ 𝑏𝑖}|.

For any 𝑝, one can define
𝜇𝛼(𝐴;𝑝) = max

𝐵1,…,𝐵𝑘⊆𝑅
|𝐵1|=|𝐵2|=⋯=|𝐵𝑘|=𝑝

𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘).

Note that, 𝜇𝛼(𝐴,𝐵1,𝐵2,…,𝐵𝑘) is equal to
|𝐴|× |𝐵1|×⋯×|𝐵𝑘|

|𝑅|
in expectation when the sets 𝐴,𝐵1,…,𝐵𝑘 are

chosen at random. The main problem we consider is to upper bound the deviation of 𝜇𝛼(𝐴;𝑝) from 𝑞𝑝𝑘/𝑁
that holds with high probability over the random choice of 𝐴. For 𝑘 = 2, Babai-Hayes [Bab02, Hay03] (and
later Steinberger [Ste13]) proved the following result:

Theorem 1 ([Bab02, Ste13]). Let 𝑅 be a finite ring, and let 0 ≤ 𝑞 ≤𝑁/2. Fix 𝛼 = (1,1). For any without
replacement sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 over 𝑅, we have

Pr(|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝2

𝑁
|≥ 4𝑝√ln(𝑁)𝑞)≤ 2

𝑁
.

Let #𝛼 denote the number of non-zero coordinates in 𝛼. In this short note, for 𝑘 ≥ 2, we prove the
following two results:

Theorem 2. Let 𝑅 be a finite ring, and let 0 ≤ 𝑞 ≤ 𝑁/2. Fix some 𝛼 ∈ 𝑅𝑘 such that #𝛼 ≥ 2. For any
positive real 𝜖 and any with replacement sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 over 𝑅, we have

Pr(|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝𝑘

𝑁
|≥ 𝑝𝑘−1√2(1+𝜖) ln(𝑁)𝑞)≤ 4

𝑁 𝜖 .
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Theorem 3. Let 𝑅 be a finite ring, and let 0 ≤ 𝑞 ≤ 𝑁/2. Fix some 𝛼 ∈ 𝑅𝑘 such that #𝛼 ≥ 2. For any
positive real 𝜖 and any without replacement sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 over 𝑅, we have

Pr(|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝𝑘

𝑁
|≥ 2𝑝𝑘−1√2(1+𝜖) ln(𝑁)𝑞)≤ 2𝑒2

𝑁 𝜖 .

Slight simplification: Let {𝑖1, 𝑖2,…,𝑖#𝛼} ⊆ {1,2,…,𝑘} be the set of non-zero coordinate indices of 𝛼. There
exists 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅 with |𝐵𝑖| = 𝑝, such that

|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝𝑘

𝑁
|= |𝜇𝛼(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−

𝑞𝑝𝑘

𝑁
|= 𝑝𝑘−#𝛼 |𝜇𝛼′(𝐴,𝐵 ′

𝑖1
,𝐵 ′

𝑖2
,…,𝐵 ′

𝑖#𝛼
)− 𝑞𝑝#𝛼

𝑁
|

≤ 𝑝𝑘−#𝛼 |𝜇𝛼′(𝐴,𝑝)− 𝑞𝑝#𝛼

𝑁
|, (1)

where 𝛼′ = (1,1,…,1) ∈ 𝑅#𝛼 and 𝐵 ′
𝑖𝑙
=𝛼𝑖𝑙 ⋅𝐵𝑖𝑙 . Thus, it is sufficient to study the problem for 𝛼 = (1,1,…,1).

Without loss of generality, we assume this form and drop 𝛼 from the subscript.
It is also clear that the (non-)commutativity of 𝑅 does not play any role vis a vis the sum-capture

problem. Indeed one can define 𝜇𝛼(𝐴;𝑝) equivalently using right multiplication.
As a side-effect of the aforementioned simplification one can completely ignore the multiplicative aspect

of 𝑅, and simply view it as an additive abelian group of order 𝑁. Henceforth, we simply assume #𝛼=𝑘
as, by virtue of (1), the case of 2 ≤#𝛼≤ 𝑘−1 is analogous.

2 A proof
A proof of both the theorems largely extends the Babai-Steinberger approach, delving into basic Fourier
analysis, with a brief foray into probabilistic tail inequalities towards the end. We reproduce Steinberger’s
excellent introductions [Bab02, Ste13] to Fourier analysis (almost verbatim) for the uninitiated, while simul-
taneously working towards a proof of Theorems 2-3 — the main technical results of this note.

A character of 𝑅 is a homomorphism 𝜒 ∶ 𝑅 →ℂx, where ℂx denotes the multiplicative group of complex
numbers. Thus,

𝜒(𝑥)𝑁 =𝜒(𝑁𝑥) = 𝜒(0) = 1,

which means that the elements in the image of 𝜒 are the 𝑁 𝑡ℎ roots of unity, and thus 𝜒(−𝑥) = 𝜒(𝑥)−1 =𝜒(𝑥).
The principal character 𝜒0 of 𝑅 is defined as the constant function that maps all 𝑥 ∈ 𝑅 to 1. Thus,
∑𝑥∈𝑅𝜒0(𝑥) =𝑁, and for any non-principal character 𝜒 and any non-zero 𝑦 ∈𝑅,

𝜒(𝑦)∑
𝑥∈𝑅

𝜒(𝑥) =∑
𝑥∈𝑅

𝜒(𝑥+𝑦) =∑
𝑥∈𝑅

𝜒(𝑥),

whence ∑𝑥∈𝑅𝜒(𝑥) = 0. Then, for distinct characters 𝜒 and 𝜉

∑
𝑥∈𝑅

𝜉(𝑥)𝜒(𝑥) = 0,

follows from the fact that 𝜉𝜒 is a non-principal character of 𝑅.
Let 𝑅̂ denote the set of characters of 𝑅. Then, it is easy to see that 𝑅̂ forms an abelian group under

pointwise multiplication. 𝑅̂ is called the dual group of 𝑅, and 𝑅 ≅ 𝑅̂.
Every function 𝑓 ∶ 𝑅 →ℂ can be seen as an element of ℂ|𝑅|. This is an 𝑁-dimensional space over ℂ. For

every 𝑓 ∶ 𝑅 →ℂ, define
𝐸𝑥[𝑓(𝑥)] =

1
𝑁

∑
𝑥∈𝑅

𝑓(𝑥),
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which gives a natural definition of inner product over ℂ|𝑅|, namely ⟨𝑓 , 𝑔⟩ = 𝐸[𝑓𝑔]. Then, for any 𝜒,𝜉 ∈ 𝑅̂,
we have

𝐸[𝜉𝜒] = 0, 𝜉 ≠ 𝜒
More precisely,

𝐸[𝜉𝜒] ={1 if 𝜉 = 𝜒,
0 if 𝜉 ≠ 𝜒.

or equivalently,

𝐸[𝜒] ={1 if 𝜒 =𝜒0,
0 if 𝜒 ≠𝜒0.

Since 𝑅̂ is a set of 𝑁 orthogonal functions in ℂ|𝑅|, they form a basis of ℂ|𝑅|, i.e., for every function 𝑓 ∶ 𝑅 →ℂ
there exist complex numbers 𝛼𝜒 for every 𝜒 ∈ 𝑅̂ such that

𝑓 = ∑
𝜒∈𝑅̂

𝛼𝜒𝜒.

The coefficients 𝛼𝜒 are called the fourier coefficients of 𝑓 and are typically written ̂𝑓(𝜒) ∶= 𝛼𝜒. In particular,
̂𝑓(𝜒0) is called the principal fourier coefficient and all other coefficients are referred as non-principal. Thus,

𝑓 = ∑
𝜒∈𝑅̂

̂𝑓(𝜒)𝜒

for any 𝑓 ∶ 𝑅 →ℂ. One has
̂𝑓(𝜒) =𝐸[𝑓𝜒].

More precisely, this can be verified from the fact that

𝐸[𝑓𝜒] =𝐸[(∑
𝜉∈𝑅̂

𝛼𝜉𝜉)𝜒]=𝐸[𝛼𝜒𝜒𝜒] = 𝛼𝜒

using orthogonality. For any 𝑓,𝑔 ∶ 𝑅 →ℂ, we have

𝐸[𝑓𝑔] =𝐸⎡
⎣
⎛
⎝∑

𝜒∈𝑅̂

̂𝑓(𝜒)𝜒⎞⎠(∑
𝜉∈𝑅̂

̂𝑔(𝜉)𝜉)⎤
⎦= ∑

𝜒,𝜉∈𝑅̂

̂𝑓(𝜒) ̂𝑔(𝜉)𝐸[𝜒𝜉] = ∑
𝜒∈𝑅̂

̂𝑓(𝜒) ̂𝑔(𝜒).

and similarly 𝐸[𝑓𝑔] =∑𝜒∈𝑅̂
̂𝑓(𝜒) ̂𝑔(𝜒). In particular 𝐸[|𝑓|2] =∑𝜒∈𝑅̂ | ̂𝑓(𝜒)|2 and if 𝑓 ∶ 𝑅 → {−1,1} then

∑
𝜒∈𝑅̂

̂𝑓(𝜒)2 = 1

since 𝐸[𝑓2] = 1. Moreover if 𝑓 ∶ 𝑅 → {0,1} then (−1)𝑓 ∶ 𝑅 → {−1,1} and (−1)𝑓 = 1−2𝑓 so

1 = ∑
𝜒∈𝑅̂

(̂−1)𝑓(𝜒)2

= ∑
𝜒∈𝑅̂

1̂−2𝑓(𝜒)2

= ∑
𝜒∈𝑅̂

(1̂(𝜒)−2 ̂𝑓(𝜒))2

= ∑
𝜒∈𝑅̂

̂1(𝜒)2−4 ̂1(𝜒) ̂𝑓(𝜒)+4 ̂𝑓(𝜒)2

= 1−4 ̂𝑓(𝜒0)+4∑
𝜒∈𝑅̂

̂𝑓(𝜒)2

3



from which we deduce:
̂𝑓(𝜒0) = ∑

𝜒∈𝑅̂

̂𝑓(𝜒)2, (whenever 𝑓 ∶ 𝑅 → {0,1}). (2)

Define convolution of 𝑓1,𝑓2 ∶ 𝑅 →ℂ as

(𝑓1 ∗𝑓2)(𝑥) =∑
𝑦∈𝑅

𝑓1(𝑦)𝑔(𝑥−𝑦) =𝑁𝐸𝑦[𝑓(𝑦)𝑔(𝑥−𝑦)].

Using the fact that 𝜒(𝑥−𝑦) = 𝜒(𝑥)𝜒(𝑦) for all 𝜒 ∈ 𝑅̂, 𝑥, 𝑦 we find

𝑓1 ∗𝑓2(𝜒) =𝐸𝑥 [(𝑓1 ∗𝑓2)(𝑥)𝜒(𝑥)]

=𝐸𝑥[∑
𝑦

𝑓1(𝑦)𝑓2(𝑥−𝑦)𝜒(𝑥)]

= 1
𝑁
∑
𝑦

𝑓1(𝑦)∑
𝑥

𝑓2(𝑥−𝑦)𝜒(𝑥)

= 1
𝑁
∑
𝑦

𝑓1(𝑦)∑
𝑥

𝑓2(𝑥)𝜒(𝑥+𝑦)

=𝑁( 1
𝑁
∑
𝑦

𝑓1(𝑦)𝜒(𝑦))( 1
𝑁
∑
𝑥

𝑓2(𝑥)𝜒(𝑥))

=𝑁 ̂𝑓1(𝜒) ̂𝑓2(𝜒). (3)

In fact, by virtue of associativity one may define a convolution 𝑓(1∗𝑘) ∶= 𝑓1 ∗𝑓2 ∗⋯∗𝑓𝑘 of any 𝑓1,𝑓2,…,𝑓𝑘 and
for any 𝑘 ≥ 2, in which case (3) has a natural generalization, namely

̂𝑓(1∗𝑘)(𝜒) =𝑁𝑘−1 ̂𝑓1(𝜒) ̂𝑓2(𝜒)… ̂𝑓𝑘(𝜒). (4)

For any (multi)set 𝑍 with elements from 𝑅, define 1𝑍 ∶ 𝑅 →ℂ by the mapping

𝑥⟼|{𝑦 ∈ 𝑍 ∶ 𝑦 = 𝑥}|,

i.e., 1𝑍(𝑥) denotes the multiplicity of 𝑥 in 𝑍. Then, using (4), for any sets 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, we have

𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘) =∑
𝑥∈𝑅

1𝐴(𝑥)1𝐵(1∗𝑘)(𝑥)

=𝑁𝐸[1𝐴1𝐵(1∗𝑘) ]

= 𝑁 ∑
𝜒∈𝑅̂

̂1𝐴(𝜒)1̂𝐵(1∗𝑘)(𝜒)

=𝑁𝑘 ∑
𝜒∈𝑅̂

1̂𝐴(𝜒) ̂1𝐵1(𝜒)1̂𝐵2(𝜒)…1̂𝐵𝑘(𝜒)

=𝑁𝑘(
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁𝑘+1 + ∑
𝜒≠𝜒0

1̂𝐴(𝜒)1̂𝐵1(𝜒)1̂𝐵2(𝜒)…1̂𝐵𝑘(𝜒)),

and, by rearranging terms

𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
=𝑁𝑘 ∑

𝜒≠𝜒0

1̂𝐴(𝜒) ̂1𝐵1(𝜒) ̂1𝐵2(𝜒)… ̂1𝐵𝑘(𝜒).

It follows that

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤𝑁𝑘 ∑

𝜒≠𝜒0

|1̂𝐴(𝜒)|| ̂1𝐵1(𝜒)||1̂𝐵2(𝜒)|…|1̂𝐵𝑘(𝜒)|.
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Define |1̂𝐴| ∶=max𝜒≠𝜒0
|1̂𝐴(𝜒)|. Then, letting 𝐵>2 =𝐵3×⋯×𝐵𝑘, we have

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤𝑁𝑘 ⋅ |1̂𝐴| ∑

𝜒≠𝜒0

|1̂𝐵1(𝜒)||1̂𝐵2(𝜒)|…|1̂𝐵𝑘(𝜒)|

≤𝑁 2 ⋅ |1̂𝐴| ⋅ |𝐵>2| ⋅∑
𝜒∈𝑅̂

|1̂𝐵1(𝜒)||1̂𝐵2(𝜒)|,

where the second inequality follows from the fact that | ̂1𝑋(𝜒)| ≤ |1̂𝑋(𝜒0)| = |𝑋|/𝑁 for any 𝑋 ⊆ 𝑅 and any
𝜒 ≠𝜒0. By Cauchy-Schwarz inequality and (2), we have

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤𝑁 2 ⋅ | ̂1𝐴| ⋅ |𝐵>2| ⋅√∑

𝜒∈𝑅̂
1̂𝐵1(𝜒)2√∑

𝜒∈𝑅̂
1̂𝐵2(𝜒)2

=𝑁 2 ⋅ | ̂1𝐴| ⋅ |𝐵>2| ⋅√ ̂1𝐵1(𝜒0)√1̂𝐵2(𝜒0)

≤𝑁 ⋅ |1̂𝐴| ⋅ |𝐵>2| ⋅√|𝐵1||𝐵2| (5)

Then, for all sets 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, |𝐵1| = |𝐵2| =⋯= |𝐵𝑘| = 𝑝, we have

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤ 𝑝𝑘−1 ⋅𝑁 ⋅ |1̂𝐴|. (6)

All that remains is to show that 𝑁 ⋅|1̂𝐴| ∈ 𝑂(ln(𝑁)𝑞) with overwhelmingly high probability. At this point
the proofs for Theorem 2 and 3 diverge depending upon the tail inequality in play.

2.1 Proof of Theorem 2
This case adheres to the well-known Chernoff bound, as also observed previously in [Bab02, Ste13, CS18].
In particular, for any 𝜒 ≠𝜒0 and an arbitrary ordering (𝐴1,…,𝐴𝑞) of 𝐴, we have

𝑁 ⋅ |1̂𝐴(𝜒)| = |∑
𝑥

1𝐴(𝑥)𝜒(𝑥)|

= |∑
𝑥

𝑞
∑
𝑖=1

1{𝐴𝑖}(𝑥)𝜒(𝑥)|

= |
𝑞

∑
𝑖=1

𝜒(𝐴𝑖)| .

Writing 𝜒(𝐴𝑖) = 𝜙(𝐴𝑖)+𝜄𝜓(𝐴𝑖) and splitting the corresponding sums, we have

𝑁 ⋅ |1̂𝐴(𝜒)| = |
𝑞

∑
𝑖=1

𝜒(𝐴𝑖)|

= |
𝑞

∑
𝑖=1

𝜙(𝐴𝑖)+𝜄
𝑞

∑
𝑖=1

𝜓(𝐴𝑖)| ,

where 𝜙(𝐴𝑖),𝜓(𝐴𝑖) are real-valued random variables with |𝜙(𝐴𝑖)|, |𝜓(𝐴𝑖)| ≤ 1 and 𝐸𝐴𝑖 [𝜙(𝐴𝑖)] = 𝐸𝐴𝑖 [𝜓(𝐴𝑖)] =
0. Furthermore, 𝜙(𝐴𝑖) are all independent, and similarly 𝜓(𝐴𝑖) are all independent. Then, for any 𝑎 ≥ 0,
we have

Pr(𝑁 ⋅ |1̂𝐴(𝜒)| ≥ 𝑎) ≤Pr(|
𝑞

∑
𝑖=1

𝜙(𝐴𝑖)| ≥ 𝑎)+Pr(|
𝑞

∑
𝑖=1

𝜓(𝐴𝑖)| ≥ 𝑎)

≤ 4𝑒−𝑎2/2𝑞,
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where the second inequality is a consequence of Chernoff bound. Finally, union bound gives

Pr(𝑁 ⋅ |1̂𝐴| ≥ 𝑎) ≤ ∑
𝜒≠𝜒0

Pr(𝑁 ⋅ |1̂𝐴(𝜒)| ≥ 𝑎) ≤ 4(𝑁 −1)𝑒−𝑎2/2𝑞. (7)

By setting 𝑎 =√2(1+𝜖) ln(𝑁)𝑞 for 𝜖 > 0

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
𝑞𝑝𝑘

𝑁
|≤ 𝑝𝑘−1√2(1+𝜖) ln(𝑁)𝑞, (8)

for all sets 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, |𝐵1| =⋯= |𝐵𝑘| = 𝑝 with at least 1−4/𝑁 𝜖 probability.

2.2 Proof of Theorem 3
Hayes [Hay03] proved the following result.

Theorem 4 (Hayes, [Hay03] Lemma 6.3). Let 𝑅 be a finite abelian group of order 𝑁, and let 𝜒 be a
non-principal character of 𝑅. Let 𝑞 ≤𝑁 and 𝑞 ′ =min{𝑞,𝑁−𝑞}. For any 𝑎 > 0, any without replacement
sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 we have

Pr(𝑁 ⋅ | ̂1𝐴(𝜒)| ≥ 𝑎√𝑞 ′)≤ 2𝑒2𝑒−𝑎2/8.

Then, the result follows by using 𝑞 ≤𝑁/2 and choosing 𝑎 = 2√2(1+𝜖) ln(𝑁).
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