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Abstract

The sum-capture problem for abelian groups is generalized over any arbitrary finite ring, for an arbitrary
number of sets, and in presence of an arbitrary multiplicative mask.

1 The problem

Let R be a finite ring and fix positive integers p,q < |R|=N. Let A = (4;)1<;<, be a random sequence (or
equivalently, an ordered multiset) over R. For any k > 2, any o € RF with at least 2 non-zero coordinates,
and any By, B,,...,By C R, we define

k
Uq(A,B1,Bg, ..., By) = H(a,bl,bQ,...,bk)eAxBl X By X++XBy:a= Zai-bz} .
i=1

For any p, one can define

A;p)= max A,Bq,B,,...,By).
Ma(A;p) B p u( 1,52 k)
|B1|=|Bs|=+-=|By|=p
. |A| X |By| X +- x |Bg| . .
Note that, uy (A, Bi, By, ..., B) is equal to 7] in expectation when the sets A, By, ..., By, are

chosen at random. The main problem we consider is to upper bound the deviation of w,(A;p) from qp® /N
that holds with high probability over the random choice of A. For k =2, Babai-Hayes [Bab02, Hay03] (and
later Steinberger [Stel3]) proved the following result:

Theorem 1 ([Bab02, Stel3]). Let R be a finite ring, and let 0< g < N /2. Fiza=(1,1). For any without
replacement sample A = (4;)1<;<, over R, we have

Pr < > 4p«/ln(N)q> < %

Let #o denote the number of non-zero coordinates in «. In this short note, for k£ > 2, we prove the
following two results:

2
qp
Uo(A;p) — N

Theorem 2. Let R be a finite ring, and let 0< g <N /2. Fiz some a € RF such that #a >2. For any
positive real € and any with replacement sample A = (4;)1<;<4 over R, we have

Pr< Zpk_1\/2(1+e)1n(N)q> g%.

k
qp
Mo (A;p) — N
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Theorem 3. Let R be a finite ring, and let 0 <q < N/2. Fiz some a € R* such that #a >2. For any
positive real € and any without replacement sample A = (A;)1<;<4 over R, we have

Y

Slight simplification: Let {11,172, ..., %44} € {1,2,...,k} be the set of non-zero coordinate indices of . There
exists By, By, ..., By, C R with |B;| =p, such that

k-1 2e’
>2p 2(14+¢€)In(N)g < e

k
qp
Uo(A;p) — N

k k s
ap ap - qap
Mo (A;p) — N = |ua(A, By, B, .., By) — N ’=pk #a Moc’(A)Bzr'erz{zt---sz{#a)_ N
#a
_ ap
<p" T uw(4,p) = | (1)

where o' = (1,1,...,1) € R** and B;l =a;,-B;,. Thus, it is sufficient to study the problem for o« =(1,1,...,1).
Without loss of generality, we assume this form and drop « from the subscript.

It is also clear that the (non-)commutativity of R does not play any role vis a vis the sum-capture
problem. Indeed one can define w,(A;p) equivalently using right multiplication.

As a side-effect of the aforementioned simplification one can completely ignore the multiplicative aspect
of R, and simply view it as an additive abelian group of order N. Henceforth, we simply assume #a =k
as, by virtue of (1), the case of 2 < #a <k —1 is analogous.

2 A proof

A proof of both the theorems largely extends the Babai-Steinberger approach, delving into basic Fourier
analysis, with a brief foray into probabilistic tail inequalities towards the end. We reproduce Steinberger’s
excellent introductions [Bab02, Ste13] to Fourier analysis (almost verbatim) for the uninitiated, while simul-
taneously working towards a proof of Theorems 2-3 — the main technical results of this note.

A character of R is a homomorphism y : R — C*, where C* denotes the multiplicative group of complex
numbers. Thus,

x(@)=x(Nz)=x(0)=1,

which means that the elements in the image of y are the N*” roots of unity, and thus y(—z) = x(z)~! = x(z).
The principal character xo of R is defined as the constant function that maps all z € R to 1. Thus,
> zer Xo(z) =N, and for any non-principal character y and any non-zero y € R,

x@)> x@)=> x(@+y)=> x(=z),

z€ER z€R z€R

whence ), g x(z) =0. Then, for distinct characters y and &

Z 5(@% =0,

ZER

follows from the fact that &y is a non-principal character of R.
Let R denote the set of characters of R. Then, it is easy to see that R forms an abelian group under
pointwise multiplication. R is called the dual group of R, and R = R.
Every function f:R — C can be seen as an element of CIFl. This is an N-dimensional space over C. For
every f:R — C, define
(@)= /(@)
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which gives a natural definition of inner product over C|%l, namely (f,9)=FE|fg]. Then, for any x,¢ € R,
we have

ElX]=0, {#x

More precisely,
_J1 ifE=y,
Blex= {o if &+ x.

or equivalently,

1 if ¥ =xo,
Blx]={ XX
0 if x # Xxo-

Since R is a set of N orthogonal functions in (C|R|, they form a basis of (C|R|, i.e., for every function f: R — C
there exist complex numbers «, for every x € R such that

f= Z oy X
X€R

The coefficients «, are called the fourier coefficients of f and are typically written f (x):=c,. In particular,
f' (xo) is called the principal fourier coefficient and all other coefficients are referred as non-principal. Thus,

f=3100x
XER
for any f:R — C. One has R
F(x)=E[fxl.

More precisely, this can be verified from the fact that

ek

using orthogonality. For any f,g:R — C, we have

E[fg]=E[<Zf(X)X> <Z§(¢')¢'>} > 3B = Zf()()g

xeR EeR x.£€R X€R

E[fx|=FE

=E[O‘)(X)_(] =0y

and similarly E[fg] = eréf()()m. In particular E[|f[*] =3z |f(x)]? and if f: R — {—1,1} then

S fx)?=

x€R

since E[f?] =1. Moreover if f: R — {0,1} then (=1)/:R — {—1,1} and (-1)f =1—2f so
1= (—1) (x)?

Y€ER
=5 T-2f(x)?
X€R
=2 (1) —-2f(x)
)(ER
=2 10? = 410f () +4f (1)
)(ER
=1-4f(x0)+4 ) f(x)?

Y€ER



from which we deduce: A .
Fx)=3Y_7(x)?,  (whenever f:R—{0,1}). (2)

x€R
Define convolution of f;,fs:R — C as

(fixf2)(@) =) Fi(y)g(z —y) = NE,[f(y)g(z —y)].

YER

Using the fact that y(z —y) = x(z)x(y) for all y € R, z, y we find

Frefa() = Bz [(f1+£2) (@)X @)

=F,

> fiW)fa(z—y)x(z)
Y

= 2 Y AO) Y falz—9)x(@)
Yy T

= 2 YA Y fae)x@+Y)
Yy T

(3 Er0x@) ( Tre®)
Yy T
= NF(0f(x). 3)

In fact, by virtue of associativity one may define a convolution f(14k):= f1*fo*---*fy of any f1, fo,..., f and
for any k > 2, in which case (3) has a natural generalization, namely

Fay 00 =NEF1 00 f200) - Fr(x)- (4)
For any (multi)set Z with elements from R, define 15: R — C by the mapping
z—Nyez : y=z}|,
i.e., 1z(z) denotes the multiplicity of z in Z. Then, using (4), for any sets By, B, ..., B C R, we have

M(A)BLB% 7Bk) = Z 1A($)1B(1*k)($)

z€ER
=NE[1A]-B(1*;C)]
=N i4(0)i5y,,(X)
X€ER
=NF> " 140015,(0)15,(X) - 15,(X)
X€ER
|Al|B1]|Ba| -~ | Bkl S e md = d =
=Nk< NFH + > 140015, X)i5,(0) - 15,(X) |,
X#Xo
and, by rearranging terms
|Al|B1l|Ba| -~ | Bkl ¥ S
u(A,By,By,...,By) — 5 =N* 5" 1400150 15,X) - 15,()-
X#Xo
It follows that
_ |AllB1]|B| - | Bg|

N(A)BlaB2y'" ’Bk)

<N 3 11a00lis, (0)lis, ()] - 115, (X)].

N XFXo



Define |1,4]|:= r1:éax|1A()()|. Then, letting B, = B3 X -+- X By, we have
XF#Xo

|A[|By||Bs| --- | B : : : N
‘M(A1BI;B21"'1BI<:)_ - N2 < NP1 > 115,001, (X)) 115, 00)]
X#Xo
SN2 1]+ |Bool- > |15, 00NIiE,(X)I,

X<k

where the second inequality follows from the fact that |1x(x)| < |1x(xo)| = |X|/N for any X C R and any
X # Xo- By Cauchy-Schwarz inequality and (2), we have

|AllBy|Ba] - | Bkl ) - 5
‘u(A,Bl,Bg,...,Bk)— N < N2 |14 1Bsal - [3 015, (X) [32 15,(X)

)(el'? XGR

= N2-|ial1Bosl - /15, (x0)1/ 15, (x0)
<N -|1a]+Bs2|-VIB1lIB: (5)

Then, for all sets By, Bs,...,By C R, |B1| =|By| =+ =|By| = p, we have
|AllB1Ba| .- | Bkl - ;

‘IU(A)BLB21'"7B.’€)_ - N Spk 1"N"|]‘A|‘ (6)

All that remains is to show that N-|14| € O(In(N)q) with overwhelmingly high probability. At this point
the proofs for Theorem 2 and 3 diverge depending upon the tail inequality in play.

2.1 Proof of Theorem 2

This case adheres to the well-known Chernoff bound, as also observed previously in [Bab02, Stel3, CS18].
In particular, for any x # xo and an arbitrary ordering (Ay,...,4,) of A, we have

N-1L001=|D 1a(z)x(z)

Writing x (4;) = ¢(4;) + t¢(4;) and splitting the corresponding sums, we have

q
N-114001 = [ D] x(4)
1=1
q q
=D B(A)+ ) (A)],
1=1 1=1

where ¢(4;),$(4;) are real-valued random variables with |¢(4;)[,[¢(4;)| <1 and E, [¢(4;)] = E 4 [0(4;)] =
0. Furthermore, ¢(A4;) are all independent, and similarly ¢(4;) are all independent. Then, for any a > 0,

we have
Pr(N-|is(x)|=a)<Pr ( i¢<Al) 2a> +Pr ( Z(L(Al) 2a>
=1 =1
<4e=9%/%



where the second inequality is a consequence of Chernoff bound. Finally, union bound gives

Pr(N-|ial=a)< 3 Pr(WV-|ia(x)| = a) <4V —1)e~*/%. ()
X#Xo

By setting a = /2(1+¢)In(N)q for € >0

k
(A, By, By, ..., By) — % <p*1/2(1+€)In(N)g, (8)
for all sets By, B, ...,Bx C R, |By| =++-=|Bg| =p with at least 1 —4/N°¢ probability.

2.2 Proof of Theorem 3
Hayes [Hay03] proved the following result.

Theorem 4 (Hayes, [Hay03] Lemma 6.3). Let R be a finite abelian group of order N, and let x be a
non-principal character of R. Let g < N and ¢' =min{q,N—q}. For anya >0, any without replacement
sample A = (A;)1<i<q we have

Pr (N [1a(x)| 2 01/) < 2%/

Then, the result follows by using ¢ <N /2 and choosing a =2/2(1+¢)In(N).
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