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Abstract
The sum-capture problem for abelian groups is generalized over any arbitrary finite ring, for an arbitrary

number of sets, and in presence of an arbitrary multiplicative mask.

1 The problem
Let 𝑅 be a finite ring and fix positive integers 𝑝,𝑞 < |𝑅| = 𝑁. Let 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 be a random sequence (or
equivalently, an ordered multiset) over 𝑅. For any 𝑘 ≥ 2, any 𝛼 ∈ 𝑅𝑘 with at least 2 non-zero coordinates,
and any 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, we define

𝜇𝛼(𝐴,𝐵1,𝐵2,…,𝐵𝑘) = |{(𝑎,𝑏1, 𝑏2,…,𝑏𝑘) ∈ 𝐴×𝐵1×𝐵2×⋯×𝐵𝑘 ∶ 𝑎 =
𝑘

∑
𝑖=1

𝛼𝑖 ⋅ 𝑏𝑖}|.

For any 𝑝, one can define
𝜇𝛼(𝐴;𝑝) = max

𝐵1,…,𝐵𝑘⊆𝑅
|𝐵1|=|𝐵2|=⋯=|𝐵𝑘|=𝑝

𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘).

Note that, 𝜇𝛼(𝐴,𝐵1,𝐵2,…,𝐵𝑘) is equal to
|𝐴|× |𝐵1|×⋯×|𝐵𝑘|

|𝑅|
in expectation when the sets 𝐴,𝐵1,…,𝐵𝑘 are

chosen at random. The main problem we consider is to upper bound the deviation of 𝜇𝛼(𝐴;𝑝) from 𝑞𝑝𝑘/𝑁
that holds with high probability over the random choice of 𝐴. For 𝑘 = 2, Babai-Hayes [Bab02, Hay03] (and
later Steinberger [Ste13]) proved the following result:

Theorem 1 ([Bab02, Ste13]). Let 𝑅 be a finite ring, and let 0 ≤ 𝑞 ≤𝑁/2. Fix 𝛼 = (1,1). For any without
replacement sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 over 𝑅, we have

Pr(|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝2

𝑁
|≥ 4𝑝√ln(𝑁)𝑞)≤ 2

𝑁
.

Let #𝛼 denote the number of non-zero coordinates in 𝛼. In this short note, for 𝑘 ≥ 2, we prove the
following two results:

Theorem 2. Let 𝑅 be a finite ring, and let 0 ≤ 𝑞 ≤ 𝑁/2. Fix some 𝛼 ∈ 𝑅𝑘 such that #𝛼 ≥ 2. For any
positive real 𝜖 and any with replacement sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 over 𝑅, we have

Pr(|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝𝑘

𝑁
|≥ 𝑝𝑘−1√2(1+𝜖) ln(𝑁)𝑞)≤ 4

𝑁 𝜖 .
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Theorem 3. Let 𝑅 be a finite ring, and let 0 ≤ 𝑞 ≤ 𝑁/2. Fix some 𝛼 ∈ 𝑅𝑘 such that #𝛼 ≥ 2. For any
positive real 𝜖 and any without replacement sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 over 𝑅, we have

Pr(|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝𝑘

𝑁
|≥ 2𝑝𝑘−1√2(1+𝜖) ln(𝑁)𝑞)≤ 2𝑒2

𝑁 𝜖 .

Slight simplification: Let {𝑖1, 𝑖2,…,𝑖#𝛼} ⊆ {1,2,…,𝑘} be the set of non-zero coordinate indices of 𝛼. There
exists 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅 with |𝐵𝑖| = 𝑝, such that

|𝜇𝛼(𝐴;𝑝)−
𝑞𝑝𝑘

𝑁
|= |𝜇𝛼(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−

𝑞𝑝𝑘

𝑁
|= 𝑝𝑘−#𝛼 |𝜇𝛼′(𝐴,𝐵 ′

𝑖1
,𝐵 ′

𝑖2
,…,𝐵 ′

𝑖#𝛼
)− 𝑞𝑝#𝛼

𝑁
|

≤ 𝑝𝑘−#𝛼 |𝜇𝛼′(𝐴,𝑝)− 𝑞𝑝#𝛼

𝑁
|, (1)

where 𝛼′ = (1,1,…,1) ∈ 𝑅#𝛼 and 𝐵 ′
𝑖𝑙
=𝛼𝑖𝑙 ⋅𝐵𝑖𝑙 . Thus, it is sufficient to study the problem for 𝛼 = (1,1,…,1).

Without loss of generality, we assume this form and drop 𝛼 from the subscript.
It is also clear that the (non-)commutativity of 𝑅 does not play any role vis a vis the sum-capture

problem. Indeed one can define 𝜇𝛼(𝐴;𝑝) equivalently using right multiplication.
As a side-effect of the aforementioned simplification one can completely ignore the multiplicative aspect

of 𝑅, and simply view it as an additive abelian group of order 𝑁. Henceforth, we simply assume #𝛼=𝑘
as, by virtue of (1), the case of 2 ≤#𝛼≤ 𝑘−1 is analogous.

2 A proof
A proof of both the theorems largely extends the Babai-Steinberger approach, delving into basic Fourier
analysis, with a brief foray into probabilistic tail inequalities towards the end. We reproduce Steinberger’s
excellent introductions [Bab02, Ste13] to Fourier analysis (almost verbatim) for the uninitiated, while simul-
taneously working towards a proof of Theorems 2-3 — the main technical results of this note.

A character of 𝑅 is a homomorphism 𝜒 ∶ 𝑅 →ℂx, where ℂx denotes the multiplicative group of complex
numbers. Thus,

𝜒(𝑥)𝑁 =𝜒(𝑁𝑥) = 𝜒(0) = 1,

which means that the elements in the image of 𝜒 are the 𝑁 𝑡ℎ roots of unity, and thus 𝜒(−𝑥) = 𝜒(𝑥)−1 =𝜒(𝑥).
The principal character 𝜒0 of 𝑅 is defined as the constant function that maps all 𝑥 ∈ 𝑅 to 1. Thus,
∑𝑥∈𝑅𝜒0(𝑥) =𝑁, and for any non-principal character 𝜒 and any non-zero 𝑦 ∈𝑅,

𝜒(𝑦)∑
𝑥∈𝑅

𝜒(𝑥) =∑
𝑥∈𝑅

𝜒(𝑥+𝑦) =∑
𝑥∈𝑅

𝜒(𝑥),

whence ∑𝑥∈𝑅𝜒(𝑥) = 0. Then, for distinct characters 𝜒 and 𝜉

∑
𝑥∈𝑅

𝜉(𝑥)𝜒(𝑥) = 0,

follows from the fact that 𝜉𝜒 is a non-principal character of 𝑅.
Let �̂� denote the set of characters of 𝑅. Then, it is easy to see that �̂� forms an abelian group under

pointwise multiplication. �̂� is called the dual group of 𝑅, and 𝑅 ≅ �̂�.
Every function 𝑓 ∶ 𝑅 →ℂ can be seen as an element of ℂ|𝑅|. This is an 𝑁-dimensional space over ℂ. For

every 𝑓 ∶ 𝑅 →ℂ, define
𝐸𝑥[𝑓(𝑥)] =

1
𝑁

∑
𝑥∈𝑅

𝑓(𝑥),
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which gives a natural definition of inner product over ℂ|𝑅|, namely ⟨𝑓 , 𝑔⟩ = 𝐸[𝑓𝑔]. Then, for any 𝜒,𝜉 ∈ �̂�,
we have

𝐸[𝜉𝜒] = 0, 𝜉 ≠ 𝜒
More precisely,

𝐸[𝜉𝜒] ={1 if 𝜉 = 𝜒,
0 if 𝜉 ≠ 𝜒.

or equivalently,

𝐸[𝜒] ={1 if 𝜒 =𝜒0,
0 if 𝜒 ≠𝜒0.

Since �̂� is a set of 𝑁 orthogonal functions in ℂ|𝑅|, they form a basis of ℂ|𝑅|, i.e., for every function 𝑓 ∶ 𝑅 →ℂ
there exist complex numbers 𝛼𝜒 for every 𝜒 ∈ �̂� such that

𝑓 = ∑
𝜒∈�̂�

𝛼𝜒𝜒.

The coefficients 𝛼𝜒 are called the fourier coefficients of 𝑓 and are typically written ̂𝑓(𝜒) ∶= 𝛼𝜒. In particular,
̂𝑓(𝜒0) is called the principal fourier coefficient and all other coefficients are referred as non-principal. Thus,

𝑓 = ∑
𝜒∈�̂�

̂𝑓(𝜒)𝜒

for any 𝑓 ∶ 𝑅 →ℂ. One has
̂𝑓(𝜒) =𝐸[𝑓𝜒].

More precisely, this can be verified from the fact that

𝐸[𝑓𝜒] =𝐸[(∑
𝜉∈�̂�

𝛼𝜉𝜉)𝜒]=𝐸[𝛼𝜒𝜒𝜒] = 𝛼𝜒

using orthogonality. For any 𝑓,𝑔 ∶ 𝑅 →ℂ, we have

𝐸[𝑓𝑔] =𝐸⎡
⎣
⎛
⎝∑

𝜒∈�̂�

̂𝑓(𝜒)𝜒⎞⎠(∑
𝜉∈�̂�

̂𝑔(𝜉)𝜉)⎤
⎦= ∑

𝜒,𝜉∈�̂�

̂𝑓(𝜒) ̂𝑔(𝜉)𝐸[𝜒𝜉] = ∑
𝜒∈�̂�

̂𝑓(𝜒) ̂𝑔(𝜒).

and similarly 𝐸[𝑓𝑔] =∑𝜒∈�̂�
̂𝑓(𝜒) ̂𝑔(𝜒). In particular 𝐸[|𝑓|2] =∑𝜒∈�̂� | ̂𝑓(𝜒)|2 and if 𝑓 ∶ 𝑅 → {−1,1} then

∑
𝜒∈�̂�

̂𝑓(𝜒)2 = 1

since 𝐸[𝑓2] = 1. Moreover if 𝑓 ∶ 𝑅 → {0,1} then (−1)𝑓 ∶ 𝑅 → {−1,1} and (−1)𝑓 = 1−2𝑓 so

1 = ∑
𝜒∈�̂�

(̂−1)𝑓(𝜒)2

= ∑
𝜒∈�̂�

1̂−2𝑓(𝜒)2

= ∑
𝜒∈�̂�

(1̂(𝜒)−2 ̂𝑓(𝜒))2

= ∑
𝜒∈�̂�

̂1(𝜒)2−4 ̂1(𝜒) ̂𝑓(𝜒)+4 ̂𝑓(𝜒)2

= 1−4 ̂𝑓(𝜒0)+4∑
𝜒∈�̂�

̂𝑓(𝜒)2
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from which we deduce:
̂𝑓(𝜒0) = ∑

𝜒∈�̂�

̂𝑓(𝜒)2, (whenever 𝑓 ∶ 𝑅 → {0,1}). (2)

Define convolution of 𝑓1,𝑓2 ∶ 𝑅 →ℂ as

(𝑓1 ∗𝑓2)(𝑥) =∑
𝑦∈𝑅

𝑓1(𝑦)𝑔(𝑥−𝑦) =𝑁𝐸𝑦[𝑓(𝑦)𝑔(𝑥−𝑦)].

Using the fact that 𝜒(𝑥−𝑦) = 𝜒(𝑥)𝜒(𝑦) for all 𝜒 ∈ �̂�, 𝑥, 𝑦 we find

𝑓1 ∗𝑓2(𝜒) =𝐸𝑥 [(𝑓1 ∗𝑓2)(𝑥)𝜒(𝑥)]

=𝐸𝑥[∑
𝑦

𝑓1(𝑦)𝑓2(𝑥−𝑦)𝜒(𝑥)]

= 1
𝑁
∑
𝑦

𝑓1(𝑦)∑
𝑥

𝑓2(𝑥−𝑦)𝜒(𝑥)

= 1
𝑁
∑
𝑦

𝑓1(𝑦)∑
𝑥

𝑓2(𝑥)𝜒(𝑥+𝑦)

=𝑁( 1
𝑁
∑
𝑦

𝑓1(𝑦)𝜒(𝑦))( 1
𝑁
∑
𝑥

𝑓2(𝑥)𝜒(𝑥))

=𝑁 ̂𝑓1(𝜒) ̂𝑓2(𝜒). (3)

In fact, by virtue of associativity one may define a convolution 𝑓(1∗𝑘) ∶= 𝑓1 ∗𝑓2 ∗⋯∗𝑓𝑘 of any 𝑓1,𝑓2,…,𝑓𝑘 and
for any 𝑘 ≥ 2, in which case (3) has a natural generalization, namely

̂𝑓(1∗𝑘)(𝜒) =𝑁𝑘−1 ̂𝑓1(𝜒) ̂𝑓2(𝜒)… ̂𝑓𝑘(𝜒). (4)

For any (multi)set 𝑍 with elements from 𝑅, define 1𝑍 ∶ 𝑅 →ℂ by the mapping

𝑥⟼|{𝑦 ∈ 𝑍 ∶ 𝑦 = 𝑥}|,

i.e., 1𝑍(𝑥) denotes the multiplicity of 𝑥 in 𝑍. Then, using (4), for any sets 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, we have

𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘) =∑
𝑥∈𝑅

1𝐴(𝑥)1𝐵(1∗𝑘)(𝑥)

=𝑁𝐸[1𝐴1𝐵(1∗𝑘) ]

= 𝑁 ∑
𝜒∈�̂�

̂1𝐴(𝜒)1̂𝐵(1∗𝑘)(𝜒)

=𝑁𝑘 ∑
𝜒∈�̂�

1̂𝐴(𝜒) ̂1𝐵1(𝜒)1̂𝐵2(𝜒)…1̂𝐵𝑘(𝜒)

=𝑁𝑘(
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁𝑘+1 + ∑
𝜒≠𝜒0

1̂𝐴(𝜒)1̂𝐵1(𝜒)1̂𝐵2(𝜒)…1̂𝐵𝑘(𝜒)),

and, by rearranging terms

𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
=𝑁𝑘 ∑

𝜒≠𝜒0

1̂𝐴(𝜒) ̂1𝐵1(𝜒) ̂1𝐵2(𝜒)… ̂1𝐵𝑘(𝜒).

It follows that

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤𝑁𝑘 ∑

𝜒≠𝜒0

|1̂𝐴(𝜒)|| ̂1𝐵1(𝜒)||1̂𝐵2(𝜒)|…|1̂𝐵𝑘(𝜒)|.
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Define |1̂𝐴| ∶=max𝜒≠𝜒0
|1̂𝐴(𝜒)|. Then, letting 𝐵>2 =𝐵3×⋯×𝐵𝑘, we have

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤𝑁𝑘 ⋅ |1̂𝐴| ∑

𝜒≠𝜒0

|1̂𝐵1(𝜒)||1̂𝐵2(𝜒)|…|1̂𝐵𝑘(𝜒)|

≤𝑁 2 ⋅ |1̂𝐴| ⋅ |𝐵>2| ⋅∑
𝜒∈�̂�

|1̂𝐵1(𝜒)||1̂𝐵2(𝜒)|,

where the second inequality follows from the fact that | ̂1𝑋(𝜒)| ≤ |1̂𝑋(𝜒0)| = |𝑋|/𝑁 for any 𝑋 ⊆ 𝑅 and any
𝜒 ≠𝜒0. By Cauchy-Schwarz inequality and (2), we have

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤𝑁 2 ⋅ | ̂1𝐴| ⋅ |𝐵>2| ⋅√∑

𝜒∈�̂�
1̂𝐵1(𝜒)2√∑

𝜒∈�̂�
1̂𝐵2(𝜒)2

=𝑁 2 ⋅ | ̂1𝐴| ⋅ |𝐵>2| ⋅√ ̂1𝐵1(𝜒0)√1̂𝐵2(𝜒0)

≤𝑁 ⋅ |1̂𝐴| ⋅ |𝐵>2| ⋅√|𝐵1||𝐵2| (5)

Then, for all sets 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, |𝐵1| = |𝐵2| =⋯= |𝐵𝑘| = 𝑝, we have

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
|𝐴||𝐵1||𝐵2|…|𝐵𝑘|

𝑁
| ≤ 𝑝𝑘−1 ⋅𝑁 ⋅ |1̂𝐴|. (6)

All that remains is to show that 𝑁 ⋅|1̂𝐴| ∈ 𝑂(ln(𝑁)𝑞) with overwhelmingly high probability. At this point
the proofs for Theorem 2 and 3 diverge depending upon the tail inequality in play.

2.1 Proof of Theorem 2
This case adheres to the well-known Chernoff bound, as also observed previously in [Bab02, Ste13, CS18].
In particular, for any 𝜒 ≠𝜒0 and an arbitrary ordering (𝐴1,…,𝐴𝑞) of 𝐴, we have

𝑁 ⋅ |1̂𝐴(𝜒)| = |∑
𝑥

1𝐴(𝑥)𝜒(𝑥)|

= |∑
𝑥

𝑞
∑
𝑖=1

1{𝐴𝑖}(𝑥)𝜒(𝑥)|

= |
𝑞

∑
𝑖=1

𝜒(𝐴𝑖)| .

Writing 𝜒(𝐴𝑖) = 𝜙(𝐴𝑖)+𝜄𝜓(𝐴𝑖) and splitting the corresponding sums, we have

𝑁 ⋅ |1̂𝐴(𝜒)| = |
𝑞

∑
𝑖=1

𝜒(𝐴𝑖)|

= |
𝑞

∑
𝑖=1

𝜙(𝐴𝑖)+𝜄
𝑞

∑
𝑖=1

𝜓(𝐴𝑖)| ,

where 𝜙(𝐴𝑖),𝜓(𝐴𝑖) are real-valued random variables with |𝜙(𝐴𝑖)|, |𝜓(𝐴𝑖)| ≤ 1 and 𝐸𝐴𝑖 [𝜙(𝐴𝑖)] = 𝐸𝐴𝑖 [𝜓(𝐴𝑖)] =
0. Furthermore, 𝜙(𝐴𝑖) are all independent, and similarly 𝜓(𝐴𝑖) are all independent. Then, for any 𝑎 ≥ 0,
we have

Pr(𝑁 ⋅ |1̂𝐴(𝜒)| ≥ 𝑎) ≤Pr(|
𝑞

∑
𝑖=1

𝜙(𝐴𝑖)| ≥ 𝑎)+Pr(|
𝑞

∑
𝑖=1

𝜓(𝐴𝑖)| ≥ 𝑎)

≤ 4𝑒−𝑎2/2𝑞,
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where the second inequality is a consequence of Chernoff bound. Finally, union bound gives

Pr(𝑁 ⋅ |1̂𝐴| ≥ 𝑎) ≤ ∑
𝜒≠𝜒0

Pr(𝑁 ⋅ |1̂𝐴(𝜒)| ≥ 𝑎) ≤ 4(𝑁 −1)𝑒−𝑎2/2𝑞. (7)

By setting 𝑎 =√2(1+𝜖) ln(𝑁)𝑞 for 𝜖 > 0

|𝜇(𝐴,𝐵1,𝐵2,…,𝐵𝑘)−
𝑞𝑝𝑘

𝑁
|≤ 𝑝𝑘−1√2(1+𝜖) ln(𝑁)𝑞, (8)

for all sets 𝐵1,𝐵2,…,𝐵𝑘 ⊆𝑅, |𝐵1| =⋯= |𝐵𝑘| = 𝑝 with at least 1−4/𝑁 𝜖 probability.

2.2 Proof of Theorem 3
Hayes [Hay03] proved the following result.

Theorem 4 (Hayes, [Hay03] Lemma 6.3). Let 𝑅 be a finite abelian group of order 𝑁, and let 𝜒 be a
non-principal character of 𝑅. Let 𝑞 ≤𝑁 and 𝑞 ′ =min{𝑞,𝑁−𝑞}. For any 𝑎 > 0, any without replacement
sample 𝐴 = (𝐴𝑖)1≤𝑖≤𝑞 we have

Pr(𝑁 ⋅ | ̂1𝐴(𝜒)| ≥ 𝑎√𝑞 ′)≤ 2𝑒2𝑒−𝑎2/8.

Then, the result follows by using 𝑞 ≤𝑁/2 and choosing 𝑎 = 2√2(1+𝜖) ln(𝑁).
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