A Note on the Generalized Sum-Capture Problem for Rings

Ashwin Jha

Ruhr-Universität Bochum Bochum, Germany letterstoashwin@gmail.com

July 12, 2024

Abstract

The sum-capture problem for abelian groups is generalized over any arbitrary finite ring, for an arbitrary number of sets, and in presence of an arbitrary multiplicative mask.

1 The problem

Let R be a finite ring and fix positive integers $p,q<|R|=N$. Let $A=(A_i)_{1\leq i\leq q}$ be a random sequence (or equivalently, an ordered multiset) over R. For any $k \geq 2$, any $\alpha \in R^k$ with at least 2 non-zero coordinates, and any $B_1, B_2, ..., B_k \subseteq R$, we define

$$
\mu_{\alpha}(A, B_1, B_2, \dots, B_k) = \left| \left\{ (a, b_1, b_2, \dots, b_k) \in A \times B_1 \times B_2 \times \dots \times B_k : a = \sum_{i=1}^k \alpha_i \cdot b_i \right\} \right|.
$$

For any p , one can define

$$
\mu_{\alpha}(A;p) = \max_{\substack{B_1,\ldots,B_k \subseteq R \\ |B_1| = |B_2| = \cdots = |B_k| = p}} \mu(A,B_1,B_2,\ldots,B_k).
$$

Note that, $\mu_\alpha(A,B_1,B_2,...\,,B_k)$ is equal to $\frac{|A|\times |B_1|\times \cdots \times |B_k|}{|R|}$ in expectation when the sets $A,B_1,...\,,B_k$ are

chosen at random. The main problem we consider is to upper bound the deviation of $\mu_{\alpha}(A;p)$ from qp^k/N that holds with high probability over the random choice of A. For $k = 2$, Babai-Hayes [\[Bab02,](#page-5-0) [Hay03\]](#page-5-1) (and later Steinberger [\[Ste13\]](#page-5-2)) proved the following result:

Theorem 1 ($[\text{Bab02}, \text{Stel3}]$). *Let* R *be a finite ring, and let* $0 \leq q \leq N/2$ *. Fix* $\alpha = (1,1)$ *. For any without* $repiacement$ $sample$ $A = (A_i)_{1 \leq i \leq q}$ $over$ R , we $have$

$$
\Pr\left(\left|\mu_{\alpha}(A;p) - \frac{qp^2}{N}\right| \ge 4p\sqrt{\ln(N)q}\right) \le \frac{2}{N}.
$$

Let $\#\alpha$ denote the number of non-zero coordinates in α . In this short note, for $k \geq 2$, we prove the following two results:

Theorem 2. Let R be a finite ring, and let $0 \le q \le N/2$. Fix some $\alpha \in R^k$ such that $\#\alpha \ge 2$. For any $\emph{positive real ϵ and any with replacement sample $A\!=\!(A_i)_{1\leq i\leq q}$ over R, we have}$

$$
\Pr\left(\left|\mu_{\alpha}(A;p) - \frac{qp^k}{N}\right| \ge p^{k-1}\sqrt{2(1+\epsilon)\ln(N)q}\right) \le \frac{4}{N^{\epsilon}}.
$$

Theorem 3. Let R be a finite ring, and let $0 \le q \le N/2$. Fix some $\alpha \in R^k$ such that $\#\alpha \ge 2$. For any $\emph{positive real ϵ}$ and any without replacement sample $A\!=\!(A_i)_{1\leq i\leq q}$ over R , we have

$$
\Pr\left(\left|\mu_{\alpha}(A;p) - \frac{qp^k}{N}\right| \ge 2p^{k-1}\sqrt{2(1+\epsilon)\ln(N)q}\right) \le \frac{2e^2}{N^{\epsilon}}.
$$

Slight simplification: Let $\{i_1, i_2, ..., i_{\# \alpha}\} \subseteq \{1, 2, ..., k\}$ be the set of non-zero coordinate indices of α . There exists $B_1, B_2, ..., B_k \subseteq R$ with $|B_i| = p$, such that

$$
\left| \mu_{\alpha}(A;p) - \frac{qp^k}{N} \right| = \left| \mu_{\alpha}(A,B_1,B_2,\dots,B_k) - \frac{qp^k}{N} \right| = p^{k - \#\alpha} \left| \mu_{\alpha'}(A,B'_{i_1},B'_{i_2},\dots,B'_{i_{\#\alpha}}) - \frac{qp^{\#\alpha}}{N} \right|
$$

$$
\leq p^{k - \#\alpha} \left| \mu_{\alpha'}(A,p) - \frac{qp^{\#\alpha}}{N} \right|,
$$
 (1)

where $\alpha' = (1, 1, ..., 1) \in R^{\# \alpha}$ and $B'_{i_l} = \alpha_{i_l} \cdot B_{i_l}$. Thus, it is sufficient to study the problem for $\alpha = (1, 1, ..., 1)$. Without loss of generality, we assume this form and drop α from the subscript.

It is also clear that the (non-)commutativity of R does not play any role vis a vis the sum-capture problem. Indeed one can define $\mu_{\alpha}(A;p)$ equivalently using right multiplication.

As a side-effect of the aforementioned simplification *one can completely ignore the multiplicative aspect of R*, and simply view it as an additive abelian group of order *N*. Henceforth, we simply assume $\#\alpha = k$ as, by virtue of [\(1\)](#page-1-0), the case of $2 \leq \#\alpha \leq k-1$ is analogous.

2 A proof

A proof of both the theorems largely extends the Babai-Steinberger approach, delving into basic Fourier analysis, with a brief foray into probabilistic tail inequalities towards the end. We reproduce Steinberger's excellent introductions [\[Bab02,](#page-5-0) [Ste13\]](#page-5-2) to Fourier analysis (almost verbatim) for the uninitiated, while simultaneously working towards a proof of Theorems $2-3$ $2-3$ — the main technical results of this note.

A *character* of R is a homomorphism $\chi : R \to \mathbb{C}^\times$, where \mathbb{C}^\times denotes the multiplicative group of complex numbers. Thus,

$$
\chi(x)^N = \chi(Nx) = \chi(0) = 1,
$$

which means that the elements in the image of χ are the N^{th} roots of unity, and thus $\chi(-x) = \chi(x)^{-1} = \overline{\chi(x)}$. The *principal character* χ_0 of R is defined as the constant function that maps all $x \in R$ to 1. Thus, $\sum_{x \in R} \chi_0(x) = N$, and for any non-principal character χ and any non-zero $y \in R$,

$$
\chi(y)\sum_{x\in R}\chi(x)=\sum_{x\in R}\chi(x+y)=\sum_{x\in R}\chi(x),
$$

whence $\sum_{x \in R} \chi(x) = 0$. Then, for distinct characters χ and ξ

$$
\sum_{x \in R} \xi(x) \overline{\chi(x)} = 0,
$$

follows from the fact that $\overline{\zeta\gamma}$ is a non-principal character of R.

Let \hat{R} denote the set of characters of R. Then, it is easy to see that \hat{R} forms an abelian group under pointwise multiplication. \hat{R} is called the *dual* group of R , and $R \cong \hat{R}$.

Every function $f:R\to\mathbb{C}$ can be seen as an element of $\mathbb{C}^{|R|}.$ This is an N -dimensional space over $\mathbb{C}.$ For every $f : R \to \mathbb{C}$, define

$$
E_x[f(x)] = \frac{1}{N} \sum_{x \in R} f(x),
$$

which gives a natural definition of inner product over $\mathbb{C}^{|R|}$, namely $\langle f,g\rangle=E[f\overline{g}]$. Then, for any $\chi,\xi\in\hat{R},$ we have

$$
E[\xi \overline{\chi}] = 0, \qquad \xi \neq \chi
$$

More precisely,

$$
E[\xi \overline{\chi}] = \begin{cases} 1 & \text{if } \xi = \chi, \\ 0 & \text{if } \xi \neq \chi. \end{cases}
$$

or equivalently,

$$
E[\chi] = \begin{cases} 1 & \text{if } \chi = \chi_0, \\ 0 & \text{if } \chi \neq \chi_0. \end{cases}
$$

Since $\hat R$ is a set of N orthogonal functions in $\mathbb C^{|R|},$ they form a basis of $\mathbb C^{|R|},$ i.e., for every function $f:R\to\mathbb C$ there exist complex numbers α_{χ} for every $\chi \in \hat{R}$ such that

$$
f=\sum_{\chi\in\hat{R}}\alpha_\chi\chi.
$$

The coefficients α_χ are called the *fourier coefficients* of f and are typically written $\hat{f}(\chi) := \alpha_\chi.$ In particular, $\hat{f}(\chi_0)$ is called the *principal* fourier coefficient and all other coefficients are referred as non-principal. Thus,

$$
f = \sum_{\chi \in \hat{R}} \hat{f}(\chi) \chi
$$

for any $f : R \to \mathbb{C}$. One has

$$
\hat{f}(\chi) = E[f\overline{\chi}].
$$

More precisely, this can be verified from the fact that

$$
E[f\overline{\chi}] = E\left[\left(\sum_{\xi \in \hat{R}} \alpha_{\xi} \xi\right) \overline{\chi}\right] = E[\alpha_{\chi} \chi \overline{\chi}] = \alpha_{\chi}
$$

using orthogonality. For any $f, g: R \to \mathbb{C}$, we have

$$
E[fg] = E\left[\left(\sum_{\chi \in \hat{R}} \hat{f}(\chi)\chi\right)\left(\sum_{\xi \in \hat{R}} \hat{g}(\xi)\xi\right)\right] = \sum_{\chi, \xi \in \hat{R}} \hat{f}(\chi)\hat{g}(\xi)E[\chi\xi] = \sum_{\chi \in \hat{R}} \hat{f}(\chi)\hat{g}(\overline{\chi}).
$$

and similarly $E[f\overline{g}]=\sum_{\chi\in \hat{R}}\hat{f}(\chi)\overline{\hat{g}(\chi)}$. In particular $E[|f|^2]=\sum_{\chi\in \hat{R}}|\hat{f}(\chi)|^2$ and if $f:R\to \{-1,1\}$ then

$$
\sum_{\chi \in \hat{R}} \hat{f}(\chi)^2 = 1
$$

since $E[f^2] = 1$. Moreover if $f: R \to \{0,1\}$ then $(-1)^f: R \to \{-1,1\}$ and $(-1)^f = 1 - 2f$ so

$$
1 = \sum_{\chi \in \hat{R}} \widehat{(-1)^f}(\chi)^2
$$

\n
$$
= \sum_{\chi \in \hat{R}} \widehat{1 - 2f}(\chi)^2
$$

\n
$$
= \sum_{\chi \in \hat{R}} (\widehat{1}(\chi) - 2\widehat{f}(\chi))^2
$$

\n
$$
= \sum_{\chi \in \hat{R}} \widehat{1}(\chi)^2 - 4\widehat{1}(\chi)\widehat{f}(\chi) + 4\widehat{f}(\chi)^2
$$

\n
$$
= 1 - 4\widehat{f}(\chi_0) + 4 \sum_{\chi \in \hat{R}} \widehat{f}(\chi)^2
$$

from which we deduce:

$$
\hat{f}(\chi_0) = \sum_{\chi \in \hat{R}} \hat{f}(\chi)^2, \qquad \text{(whenever } f: R \to \{0, 1\}).\tag{2}
$$

Define convolution of $f_1, f_2: R \to \mathbb{C}$ as

$$
(f_1 * f_2)(x) = \sum_{y \in R} f_1(y)g(x - y) = NE_y[f(y)g(x - y)].
$$

Using the fact that $\chi(x-y) = \chi(x)\overline{\chi(y)}$ for all $\chi \in \hat{R}$, x, y we find

$$
\widehat{f_1 * f_2}(x) = E_x \left[(f_1 * f_2)(x) \overline{\chi(x)} \right]
$$
\n
$$
= E_x \left[\sum_y f_1(y) f_2(x - y) \overline{\chi(x)} \right]
$$
\n
$$
= \frac{1}{N} \sum_y f_1(y) \sum_x f_2(x - y) \overline{\chi(x)}
$$
\n
$$
= \frac{1}{N} \sum_y f_1(y) \sum_x f_2(x) \overline{\chi(x + y)}
$$
\n
$$
= N \left(\frac{1}{N} \sum_y f_1(y) \overline{\chi(y)} \right) \left(\frac{1}{N} \sum_x f_2(x) \overline{\chi(x)} \right)
$$
\n
$$
= N \widehat{f_1}(\chi) \widehat{f_2}(\chi).
$$
\n(3)

In fact, by virtue of associativity one may define a convolution $f_{(1*k)}\!\coloneqq\!f_1\ast f_2\ast\cdots\ast f_k$ of any $f_1,f_2,...,f_k$ and for any $k \geq 2$, in which case [\(3\)](#page-3-0) has a natural generalization, namely

$$
\hat{f}_{(1*k)}(\chi) = N^{k-1} \hat{f}_1(\chi) \hat{f}_2(\chi) \dots \hat{f}_k(\chi). \tag{4}
$$

For any (multi)set Z with elements from R , define $1_Z : R \to \mathbb{C}$ by the mapping

$$
x \longmapsto |\{y \in Z \, : \, y = x\}|,
$$

i.e., $1_Z(x)$ denotes the multiplicity of x in Z . Then, using [\(4\)](#page-3-1), for any sets $B_1, B_2, ..., B_k \subseteq R,$ we have

$$
\mu(A, B_1, B_2, ..., B_k) = \sum_{x \in R} 1_A(x) 1_{B_{(1*k)}}(x)
$$

\n
$$
= NE[1_A 1_{B_{(1*k)}}]
$$

\n
$$
= N \sum_{\chi \in \hat{R}} \hat{1}_A(\chi) \hat{1}_{B_{(1*k)}}(\overline{\chi})
$$

\n
$$
= N^k \sum_{\chi \in \hat{R}} \hat{1}_A(\chi) \hat{1}_{B_1}(\overline{\chi}) \hat{1}_{B_2}(\overline{\chi}) ... \hat{1}_{B_k}(\overline{\chi})
$$

\n
$$
= N^k \left(\frac{|A||B_1||B_2|...|B_k|}{N^{k+1}} + \sum_{\chi \neq \chi_0} \hat{1}_A(\chi) \hat{1}_{B_1}(\overline{\chi}) \hat{1}_{B_2}(\overline{\chi}) ... \hat{1}_{B_k}(\overline{\chi}) \right),
$$

and, by rearranging terms

$$
\mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2|\dots|B_k|}{N} = N^k \sum_{\chi \neq \chi_0} \hat{1}_A(\chi) \hat{1}_{B_1}(\overline{\chi}) \hat{1}_{B_2}(\overline{\chi}) \dots \hat{1}_{B_k}(\overline{\chi}).
$$

It follows that

$$
\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2|\dots|B_k|}{N} \right| \le N^k \sum_{\chi \ne \chi_0} |\hat{1}_A(\chi)||\hat{1}_{B_1}(\overline{\chi})||\hat{1}_{B_2}(\overline{\chi})|\dots|\hat{1}_{B_k}(\overline{\chi})|.
$$

Define $|\hat{1}_A| \mathbin{:=} \max_{\chi \neq \chi_0}$ $|\hat{1}_A(\chi)|$. Then, letting $B_{>2} = B_3 \times \cdots \times B_k$, we have $|\mu(A, B_1, B_2, ..., B_k) - \frac{|A||B_1||B_2|...|B_k|}{N}$ | ≤ ⋅|1̂ | ∑ ≠⁰ $|\hat{1}_{B_1}(\chi)||\hat{1}_{B_2}(\chi)|...|\hat{1}_{B_k}(\chi)|$ $\leq N^2 \cdot |\hat{1}_A| \cdot |B_{>2}| \cdot \sum$ χ∈Â $|\hat{1}_{B_1}(\chi)||\hat{1}_{B_2}(\chi)|,$

where the second inequality follows from the fact that $|\hat{1}_X(\chi)| \leq |\hat{1}_X(\chi_0)| = |X|/N$ for any $X \subseteq R$ and any $\chi \neq \chi_0$. By Cauchy-Schwarz inequality and [\(2\)](#page-3-2), we have

$$
\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2|\dots|B_k|}{N} \right| \le N^2 \cdot |\hat{1}_A| \cdot |B_{>2}| \cdot \sqrt{\sum_{\chi \in \hat{R}} \hat{1}_{B_1}(\chi)^2} \sqrt{\sum_{\chi \in \hat{R}} \hat{1}_{B_2}(\chi)^2}
$$

$$
= N^2 \cdot |\hat{1}_A| \cdot |B_{>2}| \cdot \sqrt{\hat{1}_{B_1}(\chi_0)} \sqrt{\hat{1}_{B_2}(\chi_0)}
$$

$$
\le N \cdot |\hat{1}_A| \cdot |B_{>2}| \cdot \sqrt{|B_1||B_2|}
$$
(5)

Then, for all sets $B_1, B_2, ..., B_k \subseteq R$, $|B_1| = |B_2| = ... = |B_k| = p$, we have

$$
\left| \mu(A, B_1, B_2, \dots, B_k) - \frac{|A||B_1||B_2|\dots|B_k|}{N} \right| \le p^{k-1} \cdot N \cdot |\hat{1}_A|. \tag{6}
$$

All that remains is to show that $N \cdot |\hat{1}_A| \in O(\ln(N)q)$ with overwhelmingly high probability. At this point the proofs for Theorem [2](#page-0-0) and [3](#page-1-1) diverge depending upon the tail inequality in play.

2.1 Proof of Theorem [2](#page-0-0)

This case adheres to the well-known Chernoff bound, as also observed previously in [\[Bab02,](#page-5-0) [Ste13,](#page-5-2) [CS18\]](#page-5-3). In particular, for any $\chi \neq \chi_0$ and an arbitrary ordering $(A_1, ..., A_q)$ of A , we have

$$
N \cdot |\hat{1}_A(\chi)| = \left| \sum_x 1_A(x) \chi(x) \right|
$$

=
$$
\left| \sum_x \sum_{i=1}^q 1_{\{A_i\}}(x) \chi(x) \right|
$$

=
$$
\left| \sum_{i=1}^q \chi(A_i) \right|.
$$

Writing $\chi(A_i)$ $=$ $\phi(A_i)$ + $\iota\psi(A_i)$ and splitting the corresponding sums, we have

$$
N \cdot |\hat{1}_A(\chi)| = \left| \sum_{i=1}^q \chi(A_i) \right|
$$

=
$$
\left| \sum_{i=1}^q \phi(A_i) + \iota \sum_{i=1}^q \psi(A_i) \right|,
$$

where $\phi(A_i)$, $\psi(A_i)$ are real-valued random variables with $|\phi(A_i)|, |\psi(A_i)| \leq 1$ and $E_{A_i}[\phi(A_i)] = E_{A_i}[\psi(A_i)] =$ 0. Furthermore, $\phi(A_i)$ are all independent, and similarly $\psi(A_i)$ are all independent. Then, for any $a \ge 0$, we have

$$
\Pr(N \cdot |\hat{1}_A(\chi)| \ge a) \le \Pr\left(\left|\sum_{i=1}^q \phi(A_i)\right| \ge a\right) + \Pr\left(\left|\sum_{i=1}^q \psi(A_i)\right| \ge a\right)
$$

$$
\le 4e^{-a^2/2q},
$$

where the second inequality is a consequence of Chernoff bound. Finally, union bound gives

$$
\Pr(N \cdot |\hat{1}_A| \ge a) \le \sum_{\chi \neq \chi_0} \Pr(N \cdot |\hat{1}_A(\chi)| \ge a) \le 4(N-1)e^{-a^2/2q}.\tag{7}
$$

By setting $a = \sqrt{2(1+\epsilon)\ln(N)q}$ for $\epsilon > 0$

$$
\left|\mu(A, B_1, B_2, \dots, B_k) - \frac{qp^k}{N}\right| \le p^{k-1} \sqrt{2(1+\epsilon)\ln(N)q},\tag{8}
$$

for all sets $B_1, B_2, ..., B_k \subseteq R$, $|B_1| = \cdots = |B_k| = p$ with at least $1 - 4/N^{\epsilon}$ probability.

2.2 Proof of Theorem [3](#page-1-1)

Hayes [\[Hay03\]](#page-5-1) proved the following result.

Theorem 4 (Hayes, [\[Hay03\]](#page-5-1) Lemma 6.3). Let R be a finite abelian group of order N, and let χ be a $non-principle character of R. Let $q \leq N$ and $q' = \min\{q, N-q\}$. For any $a > 0$, any without replacement$ $sample A = (A_i)_{1 \leq i \leq q}$ we have

$$
\Pr\left(N \cdot |\hat{1}_A(\chi)| \ge a\sqrt{q'}\right) \le 2e^2 e^{-a^2/8}.
$$

Then, the result follows by using $q \leq N/2$ and choosing $a = 2\sqrt{2(1+\epsilon)\ln(N)}$.

References

- [Bab02] László Babai. The fourier transform and equations over finite abelian groups: An introduction to the method of trigonometric sums. Online Lecture Notes (Version 1.3), 2002. [http://peo](http://people.cs.uchicago.edu/~laci/reu02/fourier.pdf)[ple.cs.uchicago.edu/ laci/reu02/fourier.pdf](http://people.cs.uchicago.edu/~laci/reu02/fourier.pdf) (last accessed: 7th March, 2024).
- [CS18] Benoît Cogliati and Yannick Seurin. Analysis of the single-permutation encrypted davies-meyer construction. *Des. Codes Cryptogr.*, 86(12):2703–2723, 2018.
- [Hay03] Thomas P. Hayes. A large-deviation inequality for vector-valued martingales. Online, 2003. [https://www.cs.unm.edu/ hayes/papers/VectorAzuma/VectorAzuma20030207.pdf](https://www.cs.unm.edu/~hayes/papers/VectorAzuma/VectorAzuma20030207.pdf) (last accessed: 7th March, 2024).
- [Ste13] John P. Steinberger. Counting solutions to additive equations in random sets. *CoRR*, abs/1309.5582, 2013. <http://arxiv.org/abs/1309.5582> (last accessed: 7th March, 2024).